Personalizing Medication Recommendation with a Graph-Based Approach

Suman Bhoi, M. Lee, W. Hsu, A. Fang, N. Tan
{"title":"Personalizing Medication Recommendation with a Graph-Based Approach","authors":"Suman Bhoi, M. Lee, W. Hsu, A. Fang, N. Tan","doi":"10.1145/3488668","DOIUrl":null,"url":null,"abstract":"The broad adoption of electronic health records (EHRs) has led to vast amounts of data being accumulated on a patient’s history, diagnosis, prescriptions, and lab tests. Advances in recommender technologies have the potential to utilize this information to help doctors personalize the prescribed medications. However, existing medication recommendation systems have yet to make use of all these information sources in a seamless manner, and they do not provide a justification on why a particular medication is recommended. In this work, we design a two-stage personalized medication recommender system called PREMIER that incorporates information from the EHR. We utilize the various weights in the system to compute the contributions from the information sources for the recommended medications. Our system models the drug interaction from an external drug database and the drug co-occurrence from the EHR as graphs. Experiment results on MIMIC-III and a proprietary outpatient dataset show that PREMIER outperforms state-of-the-art medication recommendation systems while achieving the best tradeoff between accuracy and drug-drug interaction. Case studies demonstrate that the justifications provided by PREMIER are appropriate and aligned to clinical practices.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"107 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The broad adoption of electronic health records (EHRs) has led to vast amounts of data being accumulated on a patient’s history, diagnosis, prescriptions, and lab tests. Advances in recommender technologies have the potential to utilize this information to help doctors personalize the prescribed medications. However, existing medication recommendation systems have yet to make use of all these information sources in a seamless manner, and they do not provide a justification on why a particular medication is recommended. In this work, we design a two-stage personalized medication recommender system called PREMIER that incorporates information from the EHR. We utilize the various weights in the system to compute the contributions from the information sources for the recommended medications. Our system models the drug interaction from an external drug database and the drug co-occurrence from the EHR as graphs. Experiment results on MIMIC-III and a proprietary outpatient dataset show that PREMIER outperforms state-of-the-art medication recommendation systems while achieving the best tradeoff between accuracy and drug-drug interaction. Case studies demonstrate that the justifications provided by PREMIER are appropriate and aligned to clinical practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图的个性化药物推荐方法
电子健康记录(EHRs)的广泛采用导致了大量关于患者病史、诊断、处方和实验室测试的数据的积累。推荐技术的进步有可能利用这些信息来帮助医生个性化处方药物。然而,现有的药物推荐系统还没有以无缝的方式利用所有这些信息源,并且它们没有提供为什么推荐特定药物的理由。在这项工作中,我们设计了一个名为PREMIER的两阶段个性化药物推荐系统,该系统结合了来自电子病历的信息。我们利用系统中的各种权重来计算信息源对推荐药物的贡献。我们的系统将来自外部药物数据库的药物相互作用和来自电子病历的药物共现现象建模为图形。在MIMIC-III和专有门诊数据集上的实验结果表明,PREMIER优于最先进的药物推荐系统,同时实现了准确性和药物相互作用之间的最佳权衡。案例研究表明,PREMIER提供的理由是适当的,符合临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1