Dissolution of mimetite Pb5(AsO4)3Cl in malic acid solutions

Q4 Earth and Planetary Sciences Mineralogia Pub Date : 2015-06-01 DOI:10.2478/mipo-2014-0001
P. Turek, T. Bajda, M. Manecki
{"title":"Dissolution of mimetite Pb5(AsO4)3Cl in malic acid solutions","authors":"P. Turek, T. Bajda, M. Manecki","doi":"10.2478/mipo-2014-0001","DOIUrl":null,"url":null,"abstract":"Abstract Mimetite Pb5(AsO4)3Cl is the most insoluble lead arsenate mineral and could be used in remediation techniques to reduce As(V) mobility in soils. However, low-molecular-weight organic acids such as malic acid increase its solubility. The effect of malic acid on the dissolution of mimetite strongly depends on the pH of the equilibrium solution. At low pH, mimetite is decomposed mostly by the mechanism of protonation. With increasing pH, the solubility of mimetite decreases and a greater influence in its dissolution is ascribed to complexation of Pb(II) by organic ligands. During dissolution experiments, the amount of arsenic released to solution was > 26% higher in organic solutions than in inorganic solutions, and the amount of lead was > 8% greater. The solubility product of mimetite (KSP) was calculated in order to quantify the thermodynamic stability of the investigated mineral. The value obtained, i.e., -24.52 ± 0.49 fluctuates between the values of -21.69 ± 1.05 and -27.87 ± 0.42 reported in the literature.","PeriodicalId":18686,"journal":{"name":"Mineralogia","volume":"107 1","pages":"12 - 3"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mipo-2014-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Mimetite Pb5(AsO4)3Cl is the most insoluble lead arsenate mineral and could be used in remediation techniques to reduce As(V) mobility in soils. However, low-molecular-weight organic acids such as malic acid increase its solubility. The effect of malic acid on the dissolution of mimetite strongly depends on the pH of the equilibrium solution. At low pH, mimetite is decomposed mostly by the mechanism of protonation. With increasing pH, the solubility of mimetite decreases and a greater influence in its dissolution is ascribed to complexation of Pb(II) by organic ligands. During dissolution experiments, the amount of arsenic released to solution was > 26% higher in organic solutions than in inorganic solutions, and the amount of lead was > 8% greater. The solubility product of mimetite (KSP) was calculated in order to quantify the thermodynamic stability of the investigated mineral. The value obtained, i.e., -24.52 ± 0.49 fluctuates between the values of -21.69 ± 1.05 and -27.87 ± 0.42 reported in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁铁石Pb5(AsO4)3Cl在苹果酸溶液中的溶解
Pb5(AsO4)3Cl是最不溶性的砷酸铅矿物,可用于降低土壤中砷(V)迁移率的修复技术。然而,低分子量有机酸如苹果酸增加其溶解度。苹果酸对茉莉石溶解的影响很大程度上取决于平衡溶液的pH值。在低pH条件下,微晶石主要通过质子化机制进行分解。随着pH值的增加,镁铁石的溶解度降低,有机配体对Pb(II)的络合作用对其溶解的影响较大。在溶解实验中,有机溶液中砷释放到溶液中的量比无机溶液中高约26%,铅释放到溶液中的量比无机溶液中高约8%。为了量化所研究矿物的热力学稳定性,计算了镁铁石的溶解度积(KSP)。所得值-24.52±0.49在文献报道的-21.69±1.05和-27.87±0.42之间波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mineralogia
Mineralogia Earth and Planetary Sciences-Geology
CiteScore
0.80
自引率
0.00%
发文量
5
期刊介绍: - original papers in the scope of widely understood mineralogical sciences (mineralogy, petrology, geochemistry, environmental sciences, applied mineralogy etc.) - research articles, short communications, mini-reviews and review articles
期刊最新文献
Pollution sources and metallic elements mobility recorded by heavy minerals in soils affected by Cu-smelting (Legnica, SW Poland) Synthetic zeolite derived from coal fly ash decorated with magnetic alginate bead: Application to detoxification of arsenic and vanadium Metamorphic dolomitic marble-hosted talc from the Mulvoj area in the Western Pamir Mountains, Tajikistan Britholite-(Ce) from the metaluminous granite of SW Egypt Chrysoprase – history and present
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1