{"title":"A Supervised Central Unit Detector for Spanish","authors":"Kepa Xabier Bengoetxea Kortazar, Mikel Quintian","doi":"10.26342/2018-60-3","DOIUrl":null,"url":null,"abstract":"espanolEn este articulo presentamos el primer detector de la Unidad Central (CU) de resumenes cientificos en castellano basado en tecnicas de aprendizaje automatico. Para ello, nos hemos basado en la anotacion del Spanish RST Treebank anotado bajo la Teoria de la Estructura Retorica o Rhetorical Structure Theory (RST). El metodo empleado para detectar la unidad central es el modelo de bolsa de palabras utilizando clasificadores como Naive Bayes y SVM. Finalmente, evaluamos el rendimiento de los clasificadores y hemos creado el detector de CUs usando el mejor clasificador. EnglishIn this paper we present the first automatic detector of the Central Unit (CU) for Spanish scientific abstracts based on machine learning techniques. To do so, learning and evaluation data was extracted from the RST Spanish Treebank annotated under the Rhetorical Structure Theory (RST). We use a bag-of-words model based on Naive Bayes and SVM classifiers to detect the central units of a text. Finaly, we evaluate the performance of the classifiers and choose the best to create an automatic CU detector.","PeriodicalId":43929,"journal":{"name":"Procesamiento del Lenguaje Natural","volume":"118 1","pages":"29-36"},"PeriodicalIF":1.2000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procesamiento del Lenguaje Natural","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26342/2018-60-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
espanolEn este articulo presentamos el primer detector de la Unidad Central (CU) de resumenes cientificos en castellano basado en tecnicas de aprendizaje automatico. Para ello, nos hemos basado en la anotacion del Spanish RST Treebank anotado bajo la Teoria de la Estructura Retorica o Rhetorical Structure Theory (RST). El metodo empleado para detectar la unidad central es el modelo de bolsa de palabras utilizando clasificadores como Naive Bayes y SVM. Finalmente, evaluamos el rendimiento de los clasificadores y hemos creado el detector de CUs usando el mejor clasificador. EnglishIn this paper we present the first automatic detector of the Central Unit (CU) for Spanish scientific abstracts based on machine learning techniques. To do so, learning and evaluation data was extracted from the RST Spanish Treebank annotated under the Rhetorical Structure Theory (RST). We use a bag-of-words model based on Naive Bayes and SVM classifiers to detect the central units of a text. Finaly, we evaluate the performance of the classifiers and choose the best to create an automatic CU detector.
在这篇文章中,我们介绍了第一个基于机器学习技术的西班牙语科学摘要中央单元(CU)探测器。本文提出了一种方法,通过对西班牙语树库的注释,在修辞结构理论(RST)下进行注释。用于检测中央单元的方法是使用Naive贝叶斯和SVM等分类器的词袋模型。最后,我们评估了分类器的性能,并使用最佳分类器创建了CUs检测器。EnglishIn this paper we目前the first automatic《中央股(uc)探测器[abstracts based on machine learning科学技术。To do was so,学习和评价数据或from the RST[注释Treebank under the Rhetorical Structure Theory (RST)。We use a bag-of-words model based on天真贝and SVM干扰源classifiers to the中央presonus of a text。最后,我们评估了分类器的性能,并选择了最好的一个来创建一个自动铜探测器。