Synthesis, Characterization and Optical Properties of Co3O4 Nanoparticles

A. D. Khalaji
{"title":"Synthesis, Characterization and Optical Properties of Co3O4 Nanoparticles","authors":"A. D. Khalaji","doi":"10.26655/AJNANOMAT.2019.3.5","DOIUrl":null,"url":null,"abstract":"Mononuclear acyclic cobalt(II) complex [CoL](NO3)2, with the L = 3,3ʹ-dimethoxy-2,2ʹ-(propane-1,3-diyldioxy)dibenzaldehyde was synthesized and used as a precursor for preparation of the Co3O4 nanoparticles. The method was based on thermal decomposition of the cobalt(II) complex at 450 oC for 3 h in air atmosphere. The cobalt oxide nanoparticles were characterized using FT-IR, UV-Vis, XRD, SEM, and TEM techniques. The FT-IR and XRD results revealed that the Co3O4 nanopartcles were pure cubic and single phase. TEM image proved the formation of weakly agglomerated Co3O4 consisted of uniformaly shaped nanoparticles. The average particle size of the obtained Co3O4, derived from transmission electron microscopy data was approximately 17 nm, which is in agreement with that calculated by XRD. In addition, the optical spectrum indicated one direct band gap at 2.3 eV.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Nanoscience and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26655/AJNANOMAT.2019.3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Mononuclear acyclic cobalt(II) complex [CoL](NO3)2, with the L = 3,3ʹ-dimethoxy-2,2ʹ-(propane-1,3-diyldioxy)dibenzaldehyde was synthesized and used as a precursor for preparation of the Co3O4 nanoparticles. The method was based on thermal decomposition of the cobalt(II) complex at 450 oC for 3 h in air atmosphere. The cobalt oxide nanoparticles were characterized using FT-IR, UV-Vis, XRD, SEM, and TEM techniques. The FT-IR and XRD results revealed that the Co3O4 nanopartcles were pure cubic and single phase. TEM image proved the formation of weakly agglomerated Co3O4 consisted of uniformaly shaped nanoparticles. The average particle size of the obtained Co3O4, derived from transmission electron microscopy data was approximately 17 nm, which is in agreement with that calculated by XRD. In addition, the optical spectrum indicated one direct band gap at 2.3 eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米Co3O4的合成、表征及光学性质
合成了以L = 3,3′-二甲氧基-2,2′-(丙烷-1,3-二基二氧基)二苯甲醛为原料的单核无环钴(II)配合物[CoL](NO3)2,并将其作为制备纳米Co3O4的前驱体。该方法是基于钴(II)配合物在450℃的空气气氛中热分解3 h。采用FT-IR、UV-Vis、XRD、SEM和TEM等技术对氧化钴纳米颗粒进行了表征。FT-IR和XRD结果表明,Co3O4纳米颗粒为纯立方相和单相。TEM图像证明了弱团聚的Co3O4是由形状均匀的纳米颗粒组成的。通过透射电镜数据得到的Co3O4的平均粒径约为17 nm,与XRD计算结果一致。此外,光谱在2.3 eV处显示一个直接带隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of bis(4-hydroxycoumarin)methanes using nano-CuO/CeO2 as recyclable catalyst Toxicity testing of indocyanine green and fluorodeoxyglucose conjugated iron oxide nanoparticles with and without exposure to a magnetic field. The reaction of curcumin-hydrazine and its effect on bone marrow mesenchymal stem cells Hydrothermal synthesis of ZnO nanoparticles and comparison of its adsorption characteristics with the natural adsorbent (mango peel) Synthesis WO3 nanoparticle via the electrochemical method and study its super-hydrophobicity properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1