Analysis, Comparison, and Assessment of Latent Fingerprint Image Preprocessing

Haiying Guan, Paul Lee, A. Dienstfrey, M. Theofanos, C. Lamp, Brian C. Stanton, Matthew T. Schwarz
{"title":"Analysis, Comparison, and Assessment of Latent Fingerprint Image Preprocessing","authors":"Haiying Guan, Paul Lee, A. Dienstfrey, M. Theofanos, C. Lamp, Brian C. Stanton, Matthew T. Schwarz","doi":"10.1109/CVPRW.2017.91","DOIUrl":null,"url":null,"abstract":"Latent fingerprints obtained from crime scenes are rarely immediately suitable for identification purposes. Instead, most latent fingerprint images must be preprocessed to enhance the fingerprint information held within the digital image, while suppressing interference arising from noise and otherwise unwanted image features. In the following we present results of our ongoing research to assess this critical step in the forensic workflow. Previously we discussed the creation of a new database of latent fingerprint images to support such research. The new contributions of this paper are twofold. First, we implement a study in which a group of trained Latent Print Examiners provide Extended Feature Set markups of all images. We discuss the experimental design of this study, and its execution. Next, we propose metrics for measuring the increase of fingerprint information provided by latent fingerprint image preprocessing, and we present preliminary analysis of these metrics when applied to the images in our database. We consider formally defined quality scales (Good, Bad, Ugly), and minutiae identifications of latent fingerprint images before and after preprocessing. All analyses show that latent fingerprint image preprocessing results in a statistically significant increase in fingerprint information and quality.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"196 1","pages":"628-635"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Latent fingerprints obtained from crime scenes are rarely immediately suitable for identification purposes. Instead, most latent fingerprint images must be preprocessed to enhance the fingerprint information held within the digital image, while suppressing interference arising from noise and otherwise unwanted image features. In the following we present results of our ongoing research to assess this critical step in the forensic workflow. Previously we discussed the creation of a new database of latent fingerprint images to support such research. The new contributions of this paper are twofold. First, we implement a study in which a group of trained Latent Print Examiners provide Extended Feature Set markups of all images. We discuss the experimental design of this study, and its execution. Next, we propose metrics for measuring the increase of fingerprint information provided by latent fingerprint image preprocessing, and we present preliminary analysis of these metrics when applied to the images in our database. We consider formally defined quality scales (Good, Bad, Ugly), and minutiae identifications of latent fingerprint images before and after preprocessing. All analyses show that latent fingerprint image preprocessing results in a statistically significant increase in fingerprint information and quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
潜在指纹图像预处理的分析、比较与评价
从犯罪现场获得的潜在指纹很少能立即用于身份识别。相反,大多数潜在的指纹图像必须进行预处理,以增强数字图像中保存的指纹信息,同时抑制噪声和其他不需要的图像特征引起的干扰。在下文中,我们介绍了我们正在进行的研究结果,以评估法医工作流程中的这一关键步骤。之前我们讨论了建立一个新的潜在指纹图像数据库来支持这样的研究。本文的新贡献是双重的。首先,我们实现了一项研究,在该研究中,一组训练有素的潜在打印审查员提供了所有图像的扩展特征集标记。我们讨论了本研究的实验设计和实施。接下来,我们提出了衡量潜在指纹图像预处理所提供的指纹信息增加的指标,并对这些指标应用于我们数据库中的图像进行了初步分析。我们考虑了正式定义的质量尺度(好,坏,丑),以及预处理前后潜在指纹图像的细节识别。分析结果表明,对潜在指纹图像进行预处理后,指纹信息和质量均有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Energy Expenditure in Sports by Thermal Video Analysis Court-Based Volleyball Video Summarization Focusing on Rally Scene Generating 5D Light Fields in Scattering Media for Representing 3D Images Application of Computer Vision and Vector Space Model for Tactical Movement Classification in Badminton A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1