{"title":"Group Sparsity Based Target Localization for Distributed Sensor Array Networks","authors":"Qing Shen, Wei Liu, Li Wang, Yin Liu","doi":"10.1109/ICASSP.2019.8683867","DOIUrl":null,"url":null,"abstract":"The target localization problem for distributed sensor array networks where a sub-array is placed at each receiver is studied, and under the compressive sensing (CS) framework, a group sparsity based two-dimensional localization method is proposed. Instead of fusing the separately estimated angles of arrival (AOAs), it processes the information collected by all the receivers simultaneously to form the final target locations. Simulation results show that the proposed localization method provides a significant performance improvement compared with the commonly used maximum likelihood estimator (MLE).","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"101 1","pages":"4190-4194"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The target localization problem for distributed sensor array networks where a sub-array is placed at each receiver is studied, and under the compressive sensing (CS) framework, a group sparsity based two-dimensional localization method is proposed. Instead of fusing the separately estimated angles of arrival (AOAs), it processes the information collected by all the receivers simultaneously to form the final target locations. Simulation results show that the proposed localization method provides a significant performance improvement compared with the commonly used maximum likelihood estimator (MLE).