Nisha Govender, Siti Nur Athirah Mohd Kaspi, Thennavan Krishnan, Z. Mohamed-Hussein
{"title":"In Silico Screening of Breadfruit (Artocarpus altilis) Prenylated Flavonoids Identify Potential SARS-CoV Inhibitors","authors":"Nisha Govender, Siti Nur Athirah Mohd Kaspi, Thennavan Krishnan, Z. Mohamed-Hussein","doi":"10.47836/pjst.31.5.01","DOIUrl":null,"url":null,"abstract":"Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. Traditional herbals and dietary plants with medicinal values have a long antiviral history and, thus, are extensively studied in COVID-19 therapeutics development. Breadfruit (Artocarpus altilis) is a food crop with rich nutrient composition. This study screened selected breadfruit prenylated flavonoids for their potential inhibitory activities against the SARS-CoV family receptors using molecular docking and molecular dynamics (MD) simulation. The A. altilis prenylated flavonoids were selected as target ligands (artocarpin, artoindonesianin V, artonin M, cudraflavone A and cycloartobiloxanthone) and molecular targets from the SARS-CoV family were designated as receptors. Molecular docking was applied with the Lamarckian Genetic algorithm to measure the receptor-ligand orientation using AutoDock Vina software. The structural interactions of the receptor-ligand complexes were visualised using the Biovia Discovery Studio 4.5. Under all possible receptor-ligand combinations, the complexes’ minimum binding affinities (MBA) ranged from -5.5 to -9.1 kcal/mol and held by hydrophobic interactions, hydrogen bonds and electrostatic attractions. Receptor-ligand complexes with the least MBA (<-6.0 kcal/mol) along with strong structural interactions were validated by MD simulation using the GROMACS software. The 5RE4-artocarpin and 5RE4-artoindonesianin V showed the highest hydrophobic interactions at MBA=-6.6 kcal/mol and -6.4 kcal/mol, respectively. The trajectory analysis of 5RE4-artocarpin and 5RE4-artoindonesianin V complexes was fairly stable throughout a 50 ns MD simulation run. The findings conclude that artocarpin and artoindonesianin V are good potential SARS-CoV family receptor inhibitors.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"122 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.5.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health threat. Traditional herbals and dietary plants with medicinal values have a long antiviral history and, thus, are extensively studied in COVID-19 therapeutics development. Breadfruit (Artocarpus altilis) is a food crop with rich nutrient composition. This study screened selected breadfruit prenylated flavonoids for their potential inhibitory activities against the SARS-CoV family receptors using molecular docking and molecular dynamics (MD) simulation. The A. altilis prenylated flavonoids were selected as target ligands (artocarpin, artoindonesianin V, artonin M, cudraflavone A and cycloartobiloxanthone) and molecular targets from the SARS-CoV family were designated as receptors. Molecular docking was applied with the Lamarckian Genetic algorithm to measure the receptor-ligand orientation using AutoDock Vina software. The structural interactions of the receptor-ligand complexes were visualised using the Biovia Discovery Studio 4.5. Under all possible receptor-ligand combinations, the complexes’ minimum binding affinities (MBA) ranged from -5.5 to -9.1 kcal/mol and held by hydrophobic interactions, hydrogen bonds and electrostatic attractions. Receptor-ligand complexes with the least MBA (<-6.0 kcal/mol) along with strong structural interactions were validated by MD simulation using the GROMACS software. The 5RE4-artocarpin and 5RE4-artoindonesianin V showed the highest hydrophobic interactions at MBA=-6.6 kcal/mol and -6.4 kcal/mol, respectively. The trajectory analysis of 5RE4-artocarpin and 5RE4-artoindonesianin V complexes was fairly stable throughout a 50 ns MD simulation run. The findings conclude that artocarpin and artoindonesianin V are good potential SARS-CoV family receptor inhibitors.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.