{"title":"An Ideation and Roadmapping Workshop on the Development of AUVs for Oil & Gas Subsea Applications","authors":"F. Ghorbel, S. Kapusta, John Allen","doi":"10.4043/29671-MS","DOIUrl":null,"url":null,"abstract":"\n The Subsea Oil and Gas industry is quickly moving toward deeper waters, complex, challenging, and dynamic working environments, while requiring the highest level of safety. Tasks that have been historically undertaken by workers in shallow waters are now performed by Remotely Operated underwater Vehicles (ROV) at water depths that humans cannot survive. ROV's are being used for intervention (Work-class ROV's, WROV) and for surveillance on drilling and production systems and pipeline. ROVs inherently have several limitations including requirement of a large operating crew, a need of a dynamically positioned surface vessel, tether management, and high cost mobilization and demobilization. Autonomous Underwater Vehicles (AUV) are now emerging with new capabilities and technologies that could make them more efficient and more cost effective than ROVs. New paradigms in shape, autonomy, sensing and communication and physical capabilities are needed to make AUVs the tool of choice for deepwater industry. An ideation and roadmapping workshop on the Development of AUVs for Subsea Applications was held at Rice Uni-versity that (i) generated a consensus from Oil & Gas operators, service providers, technology developers and providers, academics and policy makers of the anticipated needs and wishes for AUV technology in10 years, (ii) identified gaps between current status and future needs, and (iii) developed a roadmap of specific technical needs, gaps and solutions, and identified how and when those gaps might be closed.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29671-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The Subsea Oil and Gas industry is quickly moving toward deeper waters, complex, challenging, and dynamic working environments, while requiring the highest level of safety. Tasks that have been historically undertaken by workers in shallow waters are now performed by Remotely Operated underwater Vehicles (ROV) at water depths that humans cannot survive. ROV's are being used for intervention (Work-class ROV's, WROV) and for surveillance on drilling and production systems and pipeline. ROVs inherently have several limitations including requirement of a large operating crew, a need of a dynamically positioned surface vessel, tether management, and high cost mobilization and demobilization. Autonomous Underwater Vehicles (AUV) are now emerging with new capabilities and technologies that could make them more efficient and more cost effective than ROVs. New paradigms in shape, autonomy, sensing and communication and physical capabilities are needed to make AUVs the tool of choice for deepwater industry. An ideation and roadmapping workshop on the Development of AUVs for Subsea Applications was held at Rice Uni-versity that (i) generated a consensus from Oil & Gas operators, service providers, technology developers and providers, academics and policy makers of the anticipated needs and wishes for AUV technology in10 years, (ii) identified gaps between current status and future needs, and (iii) developed a roadmap of specific technical needs, gaps and solutions, and identified how and when those gaps might be closed.