An Improved Faster R-CNN Based on MSER Decision Criterion for SAR Image Ship Detection in Harbor

Rufei Wang, Fanyun Xu, Jifang Pei, Chenwei Wang, Yulin Huang, Jianyu Yang, Junjie Wu
{"title":"An Improved Faster R-CNN Based on MSER Decision Criterion for SAR Image Ship Detection in Harbor","authors":"Rufei Wang, Fanyun Xu, Jifang Pei, Chenwei Wang, Yulin Huang, Jianyu Yang, Junjie Wu","doi":"10.1109/IGARSS.2019.8898078","DOIUrl":null,"url":null,"abstract":"SAR ship detection is essential for marine monitoring. Due to the high similarity between the harbor and the ship body on gray and texture features, the traditional methods are unable to achieve effective inshore ship detection. An improved Faster R-CNN based on MSER decision criterion for SAR ship detection in harbor is proposed in this paper. It is a ship detection method based on the combination of feature-based method and pixel-based method. Firstly, Faster R-CNN is used to generate region proposals. Then, replace the threshold decision criterion of Faster R-CNN with the maximum stability extremal region (MSER) method to reassess the generated region proposals with higher scores, aiming at improving the detection rate and reducing the false alarm rate simultaneously. Experimental results based on satellite-borne SAR data illustrate that the proposed method obtains excellent detection performance and low false alarm rate.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"56 1","pages":"1322-1325"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

SAR ship detection is essential for marine monitoring. Due to the high similarity between the harbor and the ship body on gray and texture features, the traditional methods are unable to achieve effective inshore ship detection. An improved Faster R-CNN based on MSER decision criterion for SAR ship detection in harbor is proposed in this paper. It is a ship detection method based on the combination of feature-based method and pixel-based method. Firstly, Faster R-CNN is used to generate region proposals. Then, replace the threshold decision criterion of Faster R-CNN with the maximum stability extremal region (MSER) method to reassess the generated region proposals with higher scores, aiming at improving the detection rate and reducing the false alarm rate simultaneously. Experimental results based on satellite-borne SAR data illustrate that the proposed method obtains excellent detection performance and low false alarm rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MSER决策准则的改进更快R-CNN港口SAR图像船舶检测
SAR船舶探测是海洋监测的重要组成部分。由于港口和船体在灰度和纹理特征上具有很高的相似性,传统方法无法实现有效的近岸船舶检测。提出了一种改进的基于MSER决策准则的R-CNN算法,用于港口SAR船舶探测。它是一种基于特征的方法和基于像素的方法相结合的船舶检测方法。首先,采用更快的R-CNN生成区域建议。然后,用最大稳定极值区域(MSER)方法代替Faster R-CNN的阈值决策准则,对生成的得分较高的区域建议进行重新评估,以提高检测率,同时降低虚警率。基于星载SAR数据的实验结果表明,该方法具有良好的检测性能和较低的虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1