EGNN: A Deep Reinforcement Learning Architecture for Enforcement Heuristics

Q3 Arts and Humanities Comma Pub Date : 2022-01-01 DOI:10.3233/FAIA220169
Dennis Craandijk, Floris Bex
{"title":"EGNN: A Deep Reinforcement Learning Architecture for Enforcement Heuristics","authors":"Dennis Craandijk, Floris Bex","doi":"10.3233/FAIA220169","DOIUrl":null,"url":null,"abstract":"An increasing amount of research is being directed towards neuro-symbolic computing, combining learning in neural networks with reasoning and explainability via symbolic representations [4]. One subfield of AI where neuro-symbolic methods are a promising alternative for existing symbolic methods is computational argumentation. Much of the theory of computational argumentation is based on the seminal work by Dung [6], in which he introduces abstract argumentation frameworks (AFs) of arguments and attacks, and several acceptability semantics that define which sets of arguments (extensions) can be reasonably accepted. Core computational problems in abstract argumentation are typically solved with handcrafted symbolic methods [1]. However, recently we demonstrated the potential of a deep learning approach by showing that a graph neural network is able to learn to determine almost perfectly which arguments are (part of) an extension [2]. When considering dynamic argumentation a growing research area where the knowledge about attacks between arguments can be incomplete or evolving other types of computational problems arise where neuro-sybmolic methods are still unexplored. In [3] we propose our enforcement graph neural network (EGNN), a learning-based approach to the dynamic argumentation problem of enforcement: given sets of arguments that we (do not) want to accept, how to modify the argumentation framework in such a way that these arguments are (not) accepted, while minimizing the number of changes [5]. Here we demonstrate our implementation of an EGNN.","PeriodicalId":36616,"journal":{"name":"Comma","volume":"60 1","pages":"353-354"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA220169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

An increasing amount of research is being directed towards neuro-symbolic computing, combining learning in neural networks with reasoning and explainability via symbolic representations [4]. One subfield of AI where neuro-symbolic methods are a promising alternative for existing symbolic methods is computational argumentation. Much of the theory of computational argumentation is based on the seminal work by Dung [6], in which he introduces abstract argumentation frameworks (AFs) of arguments and attacks, and several acceptability semantics that define which sets of arguments (extensions) can be reasonably accepted. Core computational problems in abstract argumentation are typically solved with handcrafted symbolic methods [1]. However, recently we demonstrated the potential of a deep learning approach by showing that a graph neural network is able to learn to determine almost perfectly which arguments are (part of) an extension [2]. When considering dynamic argumentation a growing research area where the knowledge about attacks between arguments can be incomplete or evolving other types of computational problems arise where neuro-sybmolic methods are still unexplored. In [3] we propose our enforcement graph neural network (EGNN), a learning-based approach to the dynamic argumentation problem of enforcement: given sets of arguments that we (do not) want to accept, how to modify the argumentation framework in such a way that these arguments are (not) accepted, while minimizing the number of changes [5]. Here we demonstrate our implementation of an EGNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EGNN:用于执行启发式的深度强化学习架构
越来越多的研究正转向神经符号计算,将神经网络中的学习与通过符号表示的推理和可解释性相结合[4]。人工智能的一个子领域是计算论证,其中神经符号方法是现有符号方法的一个有前途的替代方法。计算论证的许多理论都是基于Dung[6]的开创性工作,他在其中介绍了论证和攻击的抽象论证框架(AFs),以及几个可接受语义,这些语义定义了哪些论证(扩展)集可以被合理接受。抽象论证中的核心计算问题通常用手工制作的符号方法来解决[1]。然而,最近我们通过展示图神经网络能够学习几乎完美地确定哪些参数是扩展(的一部分)来展示深度学习方法的潜力[2]。当考虑动态论证时,一个不断增长的研究领域,关于论证之间攻击的知识可能是不完整的,或者其他类型的计算问题出现了,神经符号方法仍然未被探索。在[3]中,我们提出了我们的执行图神经网络(EGNN),这是一种基于学习的方法来解决执行的动态论证问题:给定一组我们(不)想要接受的论证,如何修改论证框架,使这些论证被(不)接受,同时最小化更改的数量[5]。这里我们演示EGNN的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comma
Comma Arts and Humanities-Conservation
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Abstract Argumentation with Conditional Preferences No man is an island entire of itself: Legal frameworks and the relocation of a nation’s archive due to rising sea levels Sunspot observations and glacier images. Archival research partnerships focusing on modern climate research 气象档案在气象发展史中的角色转变及发展趋势 Redrawing historical weather data and participatory archives for the future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1