Calibration of Low‐Temperature Photoluminescence of Boron‐Doped Silicon with Increased Temperature Precision

Katharina Peh, Aaron Flötotto, K. Lauer, D. Schulze, Dominik Bratek, S. Krischok
{"title":"Calibration of Low‐Temperature Photoluminescence of Boron‐Doped Silicon with Increased Temperature Precision","authors":"Katharina Peh, Aaron Flötotto, K. Lauer, D. Schulze, Dominik Bratek, S. Krischok","doi":"10.1002/pssb.202300300","DOIUrl":null,"url":null,"abstract":"Low‐temperature photoluminescence spectroscopy enables the determination of the dopant concentration of shallow impurities in silicon. This measurement method is therefore well suited for identifying and analyzing dopants (intentional impurities in silicon). A method is presented which allows the determination of the boron concentration in silicon in a range from 2.2⋅1012$2.2 \\cdot \\left(10\\right)^{12}$ to 2.2⋅1016 cm−3$2.2 \\cdot \\left(10\\right)^{16} \\left(\\text{cm}\\right)^{- 3}$ at temperatures from 4.2 to 20 K with increased temperature accuracy. This method requires only one calibration function for the photoluminescence intensity ratio of the boron‐bound exciton IBTO(BE)$I_{\\left(\\text{B}\\right)_{\\text{TO}} \\left(\\right. \\text{BE} \\left.\\right)}$ and the free exciton IITO(FE)$I_{I_{\\text{TO}} \\left(\\right. \\text{FE} \\left.\\right)}$ . The measurement temperature is obtained from the intrinsic silicon photoluminescence line of free excitons ( ITO(FE)$I_{\\text{TO}} \\left(\\right. \\text{FE} \\left.\\right) \\left.\\right)$ ) using a fitting method, which distinguishes the TO $\\text{TO }$ and LO$\\text{LO}$ components of the free exciton peak. The determined calibration function is IBTO(BE)/IITO(FE)=(5.8±0.1)⋅10−18 cm3⋅cboron⋅e(56.7±0.7)KT$\\left(I_{B_{\\text{TO}} \\left(\\right. \\text{BE} \\left.\\right)}\\right)/\\left(I_{I_{\\text{TO}} \\left(\\right. \\text{FE} \\left.\\right)}\\right) = \\left(\\right. 5.8 \\pm 0.1 \\left.\\right) \\cdot \\left(10\\right)^{- 18} \\left(\\text{cm}\\right)^{3} \\cdot c_{\\text{boron}} \\cdot \\left(\\text{e}\\right)^{\\frac{\\left(\\right. 56.7 \\pm 0.7 \\left.\\right) \\text{K}}{T}}$ . The obtained exciton binding energy to boron, Eb=4.9±0.1 meV$E_{\\text{b}} = 4.9 \\pm 0.1 \\text{meV}$ , agrees well with literature data.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low‐temperature photoluminescence spectroscopy enables the determination of the dopant concentration of shallow impurities in silicon. This measurement method is therefore well suited for identifying and analyzing dopants (intentional impurities in silicon). A method is presented which allows the determination of the boron concentration in silicon in a range from 2.2⋅1012$2.2 \cdot \left(10\right)^{12}$ to 2.2⋅1016 cm−3$2.2 \cdot \left(10\right)^{16} \left(\text{cm}\right)^{- 3}$ at temperatures from 4.2 to 20 K with increased temperature accuracy. This method requires only one calibration function for the photoluminescence intensity ratio of the boron‐bound exciton IBTO(BE)$I_{\left(\text{B}\right)_{\text{TO}} \left(\right. \text{BE} \left.\right)}$ and the free exciton IITO(FE)$I_{I_{\text{TO}} \left(\right. \text{FE} \left.\right)}$ . The measurement temperature is obtained from the intrinsic silicon photoluminescence line of free excitons ( ITO(FE)$I_{\text{TO}} \left(\right. \text{FE} \left.\right) \left.\right)$ ) using a fitting method, which distinguishes the TO $\text{TO }$ and LO$\text{LO}$ components of the free exciton peak. The determined calibration function is IBTO(BE)/IITO(FE)=(5.8±0.1)⋅10−18 cm3⋅cboron⋅e(56.7±0.7)KT$\left(I_{B_{\text{TO}} \left(\right. \text{BE} \left.\right)}\right)/\left(I_{I_{\text{TO}} \left(\right. \text{FE} \left.\right)}\right) = \left(\right. 5.8 \pm 0.1 \left.\right) \cdot \left(10\right)^{- 18} \left(\text{cm}\right)^{3} \cdot c_{\text{boron}} \cdot \left(\text{e}\right)^{\frac{\left(\right. 56.7 \pm 0.7 \left.\right) \text{K}}{T}}$ . The obtained exciton binding energy to boron, Eb=4.9±0.1 meV$E_{\text{b}} = 4.9 \pm 0.1 \text{meV}$ , agrees well with literature data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高温度精度的硼掺杂硅低温光致发光校准
低温光致发光光谱法可以测定硅中浅层杂质的掺杂浓度。因此,这种测量方法非常适合于识别和分析掺杂剂(硅中的故意杂质)。提出了一种方法,可以在4.2至20 K的温度范围内,在2.2⋅1012 $2.2 \cdot \left(10\right)^{12}$至2.2⋅1016 cm−3 $2.2 \cdot \left(10\right)^{16} \left(\text{cm}\right)^{- 3}$范围内测定硅中的硼浓度,并提高了温度精度。该方法对硼结合激子IBTO(BE) $I_{\left(\text{B}\right)_{\text{TO}} \left(\right. \text{BE} \left.\right)}$与自由激子ito (FE) $I_{I_{\text{TO}} \left(\right. \text{FE} \left.\right)}$的光致发光强度比只需要一个标定函数。利用拟合方法从自由激子(ITO(FE) $I_{\text{TO}} \left(\right. \text{FE} \left.\right) \left.\right)$)的本征硅光致发光谱线得到测量温度,区分了自由激子峰的TO $\text{TO }$和LO $\text{LO}$分量。确定的校准函数为IBTO(BE)/ ito (FE)=(5.8±0.1)⋅10−18 cm3⋅c硼⋅e(56.7±0.7)KT $\left(I_{B_{\text{TO}} \left(\right. \text{BE} \left.\right)}\right)/\left(I_{I_{\text{TO}} \left(\right. \text{FE} \left.\right)}\right) = \left(\right. 5.8 \pm 0.1 \left.\right) \cdot \left(10\right)^{- 18} \left(\text{cm}\right)^{3} \cdot c_{\text{boron}} \cdot \left(\text{e}\right)^{\frac{\left(\right. 56.7 \pm 0.7 \left.\right) \text{K}}{T}}$。得到的激子与硼的结合能Eb=4.9±0.1 meV $E_{\text{b}} = 4.9 \pm 0.1 \text{meV}$,与文献数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1