Observing System Simulation Experiment on The Accuracy of Global Satellite Mapping of Precipitation (GSMAP) by Future Small Precipitation Radar Constellation

Moeka Yamaji, T. Kubota, R. Oki
{"title":"Observing System Simulation Experiment on The Accuracy of Global Satellite Mapping of Precipitation (GSMAP) by Future Small Precipitation Radar Constellation","authors":"Moeka Yamaji, T. Kubota, R. Oki","doi":"10.1109/IGARSS.2019.8899209","DOIUrl":null,"url":null,"abstract":"As one of the future precipitation observation missions discussed in Japan Aerospace Exploration Agency (JAXA), there is a concept of small spaceborne precipitation radar constellation in the Tropics. This can improve a quality of the multi-satellite precipitation product called Global Satellite Mapping of Precipitation (GSMaP) developed by the JAXA under the Global Precipitation Measurement (GPM) Mission if realized. In this study, an Observing System Simulation Experiment (OSSE) on accuracy of GSMaP caused by increases of spaceborne precipitation radar observation was evaluated over Japan area. It was found that the accuracy got better as the frequency of pseudo precipitation radar data increases. The morphed technique in the GSMaP was adopted also in well-known global precipitation map products such as NASA IMERG and NOAA CMORPH, and therefore, current results could be expected to be similar in experiments using those products.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"22 1","pages":"7594-7597"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As one of the future precipitation observation missions discussed in Japan Aerospace Exploration Agency (JAXA), there is a concept of small spaceborne precipitation radar constellation in the Tropics. This can improve a quality of the multi-satellite precipitation product called Global Satellite Mapping of Precipitation (GSMaP) developed by the JAXA under the Global Precipitation Measurement (GPM) Mission if realized. In this study, an Observing System Simulation Experiment (OSSE) on accuracy of GSMaP caused by increases of spaceborne precipitation radar observation was evaluated over Japan area. It was found that the accuracy got better as the frequency of pseudo precipitation radar data increases. The morphed technique in the GSMaP was adopted also in well-known global precipitation map products such as NASA IMERG and NOAA CMORPH, and therefore, current results could be expected to be similar in experiments using those products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来小降水雷达星座全球卫星降水测绘(GSMAP)精度的观测系统模拟试验
热带小型星载降水雷达星座是日本宇宙航空研究开发机构(JAXA)讨论的未来降水观测任务之一。如果实现,这可以提高由JAXA在全球降水测量(GPM)任务下开发的称为全球降水卫星测绘(GSMaP)的多卫星降水产品的质量。利用星载降水雷达观测增加对日本地区GSMaP精度的影响进行了观测系统模拟试验(OSSE)。结果表明,随着伪降水雷达数据频次的增加,精度越高。GSMaP中的变形技术也被NASA IMERG和NOAA CMORPH等知名的全球降水图产品所采用,因此,使用这些产品的实验结果可能与目前的结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1