Partial discharge pattern recognition of DC XLPE cables based on convolutional neural network

Yufeng Zhu, Yongpeng Xu, Jingde Chen, Fan Rusen, Sheng Gehao, Xiuchen Jiang
{"title":"Partial discharge pattern recognition of DC XLPE cables based on convolutional neural network","authors":"Yufeng Zhu, Yongpeng Xu, Jingde Chen, Fan Rusen, Sheng Gehao, Xiuchen Jiang","doi":"10.1109/CMD.2018.8535793","DOIUrl":null,"url":null,"abstract":"In order to deal with the limitations on the feature extraction of strong random signals in DC XLPE cables, this paper proposes a self-adaptive pattern recognition method based on convolutional neural network (CNN). Convolutional Architecture for Fast Feature Embedding (Caffe) has great performance on image recognition using CNN. Four typical insulation defects are designed and PD signals are collected for pattern recognition. Four different Caffe frameworks are constructed to analyze the impact of the network structures and solver parameters on training effect. Compared with Quick-CIFAR-IO and original Alexnet network, the modified Alexnet network proposed by this paper has great adaptability to pattern recognition of partial discharges in DC XLPE cables.","PeriodicalId":6529,"journal":{"name":"2018 Condition Monitoring and Diagnosis (CMD)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Condition Monitoring and Diagnosis (CMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMD.2018.8535793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to deal with the limitations on the feature extraction of strong random signals in DC XLPE cables, this paper proposes a self-adaptive pattern recognition method based on convolutional neural network (CNN). Convolutional Architecture for Fast Feature Embedding (Caffe) has great performance on image recognition using CNN. Four typical insulation defects are designed and PD signals are collected for pattern recognition. Four different Caffe frameworks are constructed to analyze the impact of the network structures and solver parameters on training effect. Compared with Quick-CIFAR-IO and original Alexnet network, the modified Alexnet network proposed by this paper has great adaptability to pattern recognition of partial discharges in DC XLPE cables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的直流交联聚乙烯电缆局部放电模式识别
针对直流XLPE电缆中强随机信号特征提取的局限性,提出了一种基于卷积神经网络(CNN)的自适应模式识别方法。卷积快速特征嵌入体系结构(Caffe)在CNN图像识别中有很好的表现。设计了四种典型的绝缘缺陷,并采集了PD信号进行模式识别。构建了四种不同的Caffe框架,分析了网络结构和求解器参数对训练效果的影响。与Quick-CIFAR-IO和原有的Alexnet网络相比,本文提出的改进Alexnet网络对直流交联聚乙烯电缆局部放电的模式识别具有很强的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author/Paper Index Partial Discharge Analysis on-site in Various High Voltage Apparatus A Novel Anomaly Localization Method on PMU Measure System Based on LS and PCA Effects of Revulcanization on XLPE Crystalline Morphology and AC Breakdown Performance Impact of Voltage Harmonics on Condition Assessment of Polluted Insulator through a Simulation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1