HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties.

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2022-12-01 DOI:10.2139/ssrn.4247655
Rayhanul Islam, Kevin Kotalík, V. Šubr, Shanghui Gao, Jian-Rong Zhou, K. Yokomizo, T. Etrych, Jun Fang
{"title":"HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties.","authors":"Rayhanul Islam, Kevin Kotalík, V. Šubr, Shanghui Gao, Jian-Rong Zhou, K. Yokomizo, T. Etrych, Jun Fang","doi":"10.2139/ssrn.4247655","DOIUrl":null,"url":null,"abstract":"In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer N-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC50 of 20-30 μg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"265 1","pages":"102636"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2139/ssrn.4247655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a nanoformulation of 5-aminolevulinic acid (5-ALA) for tumor-targeted photodynamic therapy, in which 5-ALA was conjugated with a biocompatible polymer N-(2-hydroxypropyl)methacrylamide (HPMA) through the hydrazone bond, i.e., P-ALA. P-ALA behaves as the nano-sized molecule with an average size of 5.5 nm in aqueous solution. P-ALA shows a largely increased release rate in acidic pH than physiological pH, suggesting the rapid release profile in acidic tumor environment. P-ALA did not show apparent cytotoxicity up to 0.1 mg/ml, however, under light irradiation, remarkable cell death was induced with the IC50 of 20-30 μg/ml. More importantly, we found significantly higher tumor accumulation of P-ALA than 5-ALA which benefit from its nano-size by taking advantage of the enhanced permeability and retention (EPR) effect. Consequently, P-ALA exhibited much improved in vivo antitumor efficacy without any apparent side effects. We thus anticipate the application of P-ALA as a nano-designed photosensitizer for anticancer photodynamic therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HPMA共聚物共轭5-氨基乙酰丙酸在光动力治疗中具有优异的肿瘤反应性和靶向性。
在这项研究中,我们开发了一种用于肿瘤靶向光动力治疗的5-氨基乙酰丙酸(5-ALA)纳米配方,其中5-ALA通过腙键与生物相容性聚合物N-(2-羟丙基)甲基丙烯酰胺(HPMA)偶联,即P-ALA。P-ALA在水溶液中表现为纳米级分子,平均尺寸为5.5 nm。P-ALA在酸性pH下的释放速率明显高于生理pH,说明其在酸性肿瘤环境下具有快速释放的特点。当P-ALA浓度达到0.1 mg/ml时,未表现出明显的细胞毒性,但在光照射下,IC50为20 ~ 30 μg/ml,可诱导细胞明显死亡。更重要的是,我们发现P-ALA的肿瘤蓄积量明显高于5-ALA,这得益于其纳米尺寸,利用了增强的渗透性和滞留性(EPR)效应。因此,P-ALA在体内抗肿瘤效果明显提高,且无明显副作用。因此,我们期望P-ALA作为纳米光敏剂用于抗癌光动力治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
期刊最新文献
Comparison of cholesterol transport capacity of peptide- and polymer-based lipid Nanodiscs Retraction notice to “In vitro angiogenic performance and in vivo brain targeting of magnetized endothelial progenitor cells for neurorepair therapies” [Nanomedicine: Nanotechnology, Biology and Medicine 10/1 (2014) 225–234] Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model. Micellar curcumol for maintenance therapy of ovarian cancer by activating the FOXO3a Conceptual rationale for the use of chemically modified nanocomposites for active influence on atherosclerosis using the greater omentum model of experimental animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1