In vitro and in vivo effect of 3-Para-fluorobenzoyl-propionic acid on rat liver mitochondrial permeability transition pore opening and lipid peroxidation
A. Olowofolahan, Omosola L. Bolarin, O. Olorunsogo
{"title":"In vitro and in vivo effect of 3-Para-fluorobenzoyl-propionic acid on rat liver mitochondrial permeability transition pore opening and lipid peroxidation","authors":"A. Olowofolahan, Omosola L. Bolarin, O. Olorunsogo","doi":"10.2478/ast-2020-0005","DOIUrl":null,"url":null,"abstract":"Abstract The opening of mitochondrial permeability transition (mPT) pore is a well recognized important event in the execution of mitochondrial-mediated apoptosis. Some bioactive compounds induce apoptosis in tumour cells via the induction of mPT pore opening. This study therefore investigated the effect of 3-Para-fluorobenzoyl-propionic acid (3PFBPA), a metabolite of haloperidol on mPT pore, mitochondrial ATPase activity (mATPase), mitochondrial lipid peroxidation (mLPO) and cytochrome c release (CCR). Thirty-two male Wistar rats, were acclimatized for 14 days in clean cages. After 30 days of treatment, they were sacrificed and the liver mitochondria isolated using differential centrifugation. The mPT pore, mATPase, mLPO and CCR were determined by standard methods using a spectrophotometer. The mPT pore opening was induced by 3PFBPA by 1.4, 3.6, 5.6, 6.6 and 7.4 folds, when compared with the control. Also, there was release of cytochrome c and enhancement of mATPase activity by 3PFBPA. The results also show that 3PFBPA reduced lipid peroxidation. However, oral administration of 3PFBPA at 50, 100 and 200 mg/kg did not have any effect on mPT pore opening and mATPase activity when compared with the control but there was inhibition of mLPO. These findings suggested the pharmacological potential of 3PFBPA against the pathological processes related to insufficient apoptosis (based on the in vitro data) and oxidative stress due to its anti-lipidperoxidative effect.","PeriodicalId":7998,"journal":{"name":"Annals of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ast-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The opening of mitochondrial permeability transition (mPT) pore is a well recognized important event in the execution of mitochondrial-mediated apoptosis. Some bioactive compounds induce apoptosis in tumour cells via the induction of mPT pore opening. This study therefore investigated the effect of 3-Para-fluorobenzoyl-propionic acid (3PFBPA), a metabolite of haloperidol on mPT pore, mitochondrial ATPase activity (mATPase), mitochondrial lipid peroxidation (mLPO) and cytochrome c release (CCR). Thirty-two male Wistar rats, were acclimatized for 14 days in clean cages. After 30 days of treatment, they were sacrificed and the liver mitochondria isolated using differential centrifugation. The mPT pore, mATPase, mLPO and CCR were determined by standard methods using a spectrophotometer. The mPT pore opening was induced by 3PFBPA by 1.4, 3.6, 5.6, 6.6 and 7.4 folds, when compared with the control. Also, there was release of cytochrome c and enhancement of mATPase activity by 3PFBPA. The results also show that 3PFBPA reduced lipid peroxidation. However, oral administration of 3PFBPA at 50, 100 and 200 mg/kg did not have any effect on mPT pore opening and mATPase activity when compared with the control but there was inhibition of mLPO. These findings suggested the pharmacological potential of 3PFBPA against the pathological processes related to insufficient apoptosis (based on the in vitro data) and oxidative stress due to its anti-lipidperoxidative effect.