WorkloadCompactor: reducing datacenter cost while providing tail latency SLO guarantees

T. Zhu, M. Kozuch, Mor Harchol-Balter
{"title":"WorkloadCompactor: reducing datacenter cost while providing tail latency SLO guarantees","authors":"T. Zhu, M. Kozuch, Mor Harchol-Balter","doi":"10.1145/3127479.3132245","DOIUrl":null,"url":null,"abstract":"Service providers want to reduce datacenter costs by consolidating workloads onto fewer servers. At the same time, customers have performance goals, such as meeting tail latency Service Level Objectives (SLOs). Consolidating workloads while meeting tail latency goals is challenging, especially since workloads in production environments are often bursty. To limit the congestion when consolidating workloads, customers and service providers often agree upon rate limits. Ideally, rate limits are chosen to maximize the number of workloads that can be co-located while meeting each workload's SLO. In reality, neither the service provider nor customer knows how to choose rate limits. Customers end up selecting rate limits on their own in some ad hoc fashion, and service providers are left to optimize given the chosen rate limits. This paper describes WorkloadCompactor, a new system that uses workload traces to automatically choose rate limits simultaneously with selecting onto which server to place workloads. Our system meets customer tail latency SLOs while minimizing datacenter resource costs. Our experiments show that by optimizing the choice of rate limits, WorkloadCompactor reduces the number of required servers by 30--60% as compared to state-of-the-art approaches.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3132245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Service providers want to reduce datacenter costs by consolidating workloads onto fewer servers. At the same time, customers have performance goals, such as meeting tail latency Service Level Objectives (SLOs). Consolidating workloads while meeting tail latency goals is challenging, especially since workloads in production environments are often bursty. To limit the congestion when consolidating workloads, customers and service providers often agree upon rate limits. Ideally, rate limits are chosen to maximize the number of workloads that can be co-located while meeting each workload's SLO. In reality, neither the service provider nor customer knows how to choose rate limits. Customers end up selecting rate limits on their own in some ad hoc fashion, and service providers are left to optimize given the chosen rate limits. This paper describes WorkloadCompactor, a new system that uses workload traces to automatically choose rate limits simultaneously with selecting onto which server to place workloads. Our system meets customer tail latency SLOs while minimizing datacenter resource costs. Our experiments show that by optimizing the choice of rate limits, WorkloadCompactor reduces the number of required servers by 30--60% as compared to state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WorkloadCompactor:降低数据中心成本,同时提供尾延迟SLO保证
服务提供商希望通过将工作负载整合到更少的服务器上来降低数据中心成本。同时,客户有性能目标,例如满足尾延迟服务水平目标(slo)。在满足尾部延迟目标的同时整合工作负载是具有挑战性的,特别是因为生产环境中的工作负载通常是突发的。为了在合并工作负载时限制拥塞,客户和服务提供商通常会商定速率限制。理想情况下,选择速率限制是为了在满足每个工作负载的SLO的同时,最大限度地增加可共存的工作负载数量。实际上,服务提供商和客户都不知道如何选择费率限制。客户最终会以某种特别的方式自行选择费率限制,而服务提供商则会根据所选的费率限制进行优化。本文介绍了WorkloadCompactor,一个利用工作负载跟踪来自动选择速率限制的新系统,同时选择将工作负载放在哪个服务器上。我们的系统满足客户尾部延迟slo,同时最大限度地降低数据中心资源成本。我们的实验表明,与最先进的方法相比,通过优化速率限制的选择,WorkloadCompactor将所需服务器的数量减少了30- 60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1