Qualitative system identification with the use of on-line genetic algorithms

C.H Lo, K.M Chow, Y.K Wong, A.B Rad
{"title":"Qualitative system identification with the use of on-line genetic algorithms","authors":"C.H Lo,&nbsp;K.M Chow,&nbsp;Y.K Wong,&nbsp;A.B Rad","doi":"10.1016/S0928-4869(01)00026-X","DOIUrl":null,"url":null,"abstract":"<div><p>The major problem in building qualitative models via on-line qualitative system identification is how to filter the spurious constraints that are generated from the qualitative reasoning technique. This paper proposes a solution to this problem by an integration of genetic algorithms (GA) and qualitative reasoning. The paper will demonstrate the use of qualitative reasoning to partition the input quantity space into different subsystems, and implementation of GAs to filter and optimize the predicted constraints. The proposed method is verified by simulated examples that suggest the algorithm converges to the optimal point with high speed.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(01)00026-X","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092848690100026X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The major problem in building qualitative models via on-line qualitative system identification is how to filter the spurious constraints that are generated from the qualitative reasoning technique. This paper proposes a solution to this problem by an integration of genetic algorithms (GA) and qualitative reasoning. The paper will demonstrate the use of qualitative reasoning to partition the input quantity space into different subsystems, and implementation of GAs to filter and optimize the predicted constraints. The proposed method is verified by simulated examples that suggest the algorithm converges to the optimal point with high speed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用在线遗传算法进行定性系统辨识
通过在线定性系统识别建立定性模型的主要问题是如何过滤由定性推理技术产生的虚假约束。本文提出了将遗传算法与定性推理相结合的方法来解决这一问题。本文将演示使用定性推理将输入数量空间划分为不同的子系统,并实现GAs来过滤和优化预测约束。仿真算例验证了该方法的有效性,表明该算法收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The definition of simulation and its role within an aerospace company Modelling an industrial manipulator a case study Application of PDSS to improve the pricing efficiency of wholesale fish markets General modeling for model-based FDD on building HVAC system Methods for anisotropic selection of final states in the full band ensemble Monte Carlo simulation framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1