Assessment of Damage and Residual Load Capacity of the Normal and Retrofitted RC Columns against the Impact Loading

S. Mollaei, M. Babaei, M. Jalilkhani
{"title":"Assessment of Damage and Residual Load Capacity of the Normal and Retrofitted RC Columns against the Impact Loading","authors":"S. Mollaei, M. Babaei, M. Jalilkhani","doi":"10.22075/JRCE.2020.20000.1394","DOIUrl":null,"url":null,"abstract":"In the current study, the effect of the extreme lateral loading on the square and circular Reinforced Concrete (RC) columns with and without retrofitting was investigated. 3D finite element modeling of the columns and impact loading condition was performed using the ABAQUS/Explicit software. The data of a real scale blast test carried out in our previous study were used to verify the modeling accuracy. The effect of secondary moments due to axial load, different geometrical characteristics of the steel jacket, compressive strength of the concrete, and the longitudinal reinforcement on the explosive capacity of the column and its residual axial strength were studied. Results showed that the circular columns perform better under the sudden lateral pressure than equivalent square ones. Also, steel jacketing increased the explosive capacity of the column, which was more effective in the circular columns than the square ones. The results also indicated that steel jacketing with less buckling capacity had the least improvements on the column capacity. It was found that the effects of the initial axial force in the column were significant on its behavior under explosive loading condition, which should be taken into account in any modeling approaches. In general, the P-δ phenomenon had less effect on the circular columns than the square ones. Also, the use of a high-strength concrete and a higher percentage of longitudinal reinforcement further influenced the retrofitted columns than unretrofited (normal) ones, which was more evident in the circular columns in comparison with square columns.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.20000.1394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

In the current study, the effect of the extreme lateral loading on the square and circular Reinforced Concrete (RC) columns with and without retrofitting was investigated. 3D finite element modeling of the columns and impact loading condition was performed using the ABAQUS/Explicit software. The data of a real scale blast test carried out in our previous study were used to verify the modeling accuracy. The effect of secondary moments due to axial load, different geometrical characteristics of the steel jacket, compressive strength of the concrete, and the longitudinal reinforcement on the explosive capacity of the column and its residual axial strength were studied. Results showed that the circular columns perform better under the sudden lateral pressure than equivalent square ones. Also, steel jacketing increased the explosive capacity of the column, which was more effective in the circular columns than the square ones. The results also indicated that steel jacketing with less buckling capacity had the least improvements on the column capacity. It was found that the effects of the initial axial force in the column were significant on its behavior under explosive loading condition, which should be taken into account in any modeling approaches. In general, the P-δ phenomenon had less effect on the circular columns than the square ones. Also, the use of a high-strength concrete and a higher percentage of longitudinal reinforcement further influenced the retrofitted columns than unretrofited (normal) ones, which was more evident in the circular columns in comparison with square columns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢筋混凝土柱在冲击荷载作用下的损伤和残余承载能力评估
在本研究中,研究了极端侧向荷载对方形和圆形钢筋混凝土柱进行和不进行加固的影响。采用ABAQUS/Explicit软件对柱体进行了三维有限元建模和冲击载荷工况分析。我们利用之前研究中进行的真实规模爆炸试验数据来验证模型的准确性。研究了轴向荷载引起的二次弯矩、钢护套不同几何特性、混凝土抗压强度和纵向钢筋对柱的爆炸能力和残余轴向强度的影响。结果表明,圆形柱在突侧压力作用下的性能优于方形柱。此外,钢护套增加了柱的爆炸能力,在圆形柱中比方形柱更有效。结果还表明,屈曲能力较小的钢护套对柱承载力的改善效果最小。研究发现,柱内初始轴向力对柱体在爆炸载荷条件下的受力特性影响显著,这是任何建模方法都应考虑的问题。一般来说,P-δ现象对圆形柱的影响小于方形柱。此外,使用高强度混凝土和更高比例的纵向钢筋进一步影响了改造柱比未改造(普通)柱,这在圆形柱比方形柱更明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1