Study of the relationship between the intrinsic Q-factor of a volumetric wave resonator and the error in determining the dielectric constant of a material

V. Krylov
{"title":"Study of the relationship between the intrinsic Q-factor of a volumetric wave resonator and the error in determining the dielectric constant of a material","authors":"V. Krylov","doi":"10.26896/1028-6861-2023-89-4-45-49","DOIUrl":null,"url":null,"abstract":"To achieve high accuracy in determining the dielectric properties of materials using guide cavity, measurements are performed using resonant oscillation with high Q-factor. The error in determination of the resonant frequency is considered given a priori in calculations of the dielectric permittivity and the dielectric loss tangent, whereas the dependence of the error of dielectric measurements on the resonance oscillation Q-factor is out of scope. We present the results of studying the relationship between the resonance frequency, Q-factor and resonating cavity transmission factor. Proceeding from the analysis of the shape of the resonance curve as a frequency dependence of the transmission factor, we determined a relationship between the error of the resonant frequency and Q-factor of the oscillations used for measuring the dielectric properties of the material. This is especially important when measuring the temperature dependences of the dielectric permittivity of materials under their heating at super high frequencies (SHF), when the conductivity of resonator walls and the Q-factor of resonant oscillations decrease as the temperature goes up. It was demonstrated that enhancing of the accuracy of measuring the transition factor is a provision for achieving the required accuracy of measuring the dielectric properties of materials at a lower values of the resonator Q-factor. The results obtained can be used in studying high-temperature resonator devices intended for measuring the dielectric properties of materials in SHF range.","PeriodicalId":13559,"journal":{"name":"Industrial laboratory. Diagnostics of materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial laboratory. Diagnostics of materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26896/1028-6861-2023-89-4-45-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve high accuracy in determining the dielectric properties of materials using guide cavity, measurements are performed using resonant oscillation with high Q-factor. The error in determination of the resonant frequency is considered given a priori in calculations of the dielectric permittivity and the dielectric loss tangent, whereas the dependence of the error of dielectric measurements on the resonance oscillation Q-factor is out of scope. We present the results of studying the relationship between the resonance frequency, Q-factor and resonating cavity transmission factor. Proceeding from the analysis of the shape of the resonance curve as a frequency dependence of the transmission factor, we determined a relationship between the error of the resonant frequency and Q-factor of the oscillations used for measuring the dielectric properties of the material. This is especially important when measuring the temperature dependences of the dielectric permittivity of materials under their heating at super high frequencies (SHF), when the conductivity of resonator walls and the Q-factor of resonant oscillations decrease as the temperature goes up. It was demonstrated that enhancing of the accuracy of measuring the transition factor is a provision for achieving the required accuracy of measuring the dielectric properties of materials at a lower values of the resonator Q-factor. The results obtained can be used in studying high-temperature resonator devices intended for measuring the dielectric properties of materials in SHF range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体波谐振器的本征q因子与材料介电常数测定误差之间关系的研究
为了实现导腔介质介电特性测量的高精度,采用高q因子谐振振荡进行测量。在计算介电常数和介电损耗正切时,谐振频率的测定误差被认为是先验的,而介电测量误差对谐振振荡q因子的依赖则超出了范围。本文给出了谐振频率、q因子和谐振腔透射因子之间关系的研究结果。从分析谐振曲线的形状作为传输因子的频率依赖性出发,我们确定了用于测量材料介电性能的振荡的谐振频率误差与q因子之间的关系。当测量材料在超高频(SHF)加热下的介电常数的温度依赖性时,当谐振腔壁的电导率和谐振振荡的q因子随着温度的升高而降低时,这一点尤为重要。结果表明,提高过渡系数的测量精度是在较低的谐振腔q因子值下实现测量材料介电特性所需精度的前提。所得结果可用于高温谐振器器件的研究,用于测量超高频范围内材料的介电特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the use of polyvinyl alcohol in the manufacture of pressed samples for X-ray fluorescence analysis Determination of the criterion for the morphological classification of etching pits formed in InSb single crystals grown by the Czochralski method in the crystallographic direction [111] and doped with tellurium The paradigm shift in mathematical methods of research Low cycle fracture resistance of the superalloy at single- and two-frequency modes of loading Fatigue fracture of 316L steel manufactured by selective laser melting method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1