EnResNet: ResNets Ensemble via the Feynman-Kac Formalism for Adversarial Defense and Beyond

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2020-07-13 DOI:10.1137/19m1265302
Bao Wang, Binjie Yuan, Zuoqiang Shi, S. Osher
{"title":"EnResNet: ResNets Ensemble via the Feynman-Kac Formalism for Adversarial Defense and Beyond","authors":"Bao Wang, Binjie Yuan, Zuoqiang Shi, S. Osher","doi":"10.1137/19m1265302","DOIUrl":null,"url":null,"abstract":"Empirical adversarial risk minimization is a widely used mathematical framework to robustly train deep neural nets that are resistant to adversarial attacks. However, both natural and robust accura...","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"96 1","pages":"559-582"},"PeriodicalIF":1.9000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/19m1265302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

Empirical adversarial risk minimization is a widely used mathematical framework to robustly train deep neural nets that are resistant to adversarial attacks. However, both natural and robust accura...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EnResNet:基于费曼-卡茨形式主义的对抗防御及其后续的ResNets集成
经验对抗性风险最小化是一种广泛使用的数学框架,用于鲁棒训练抵抗对抗性攻击的深度神经网络。然而,无论是自然的还是稳健的……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1