Pengcheng Yin, Jin Xu, S. Fang, Ningjie Shi, G. Zhao, Wenxiang Wang, H. Yin, L. Yue, Yanyu Wei, Dazhi Li, Luqi Zhang
{"title":"0.22THz Ridged Sine Waveguide BWO and Sheet Beam Electron Optical System","authors":"Pengcheng Yin, Jin Xu, S. Fang, Ningjie Shi, G. Zhao, Wenxiang Wang, H. Yin, L. Yue, Yanyu Wei, Dazhi Li, Luqi Zhang","doi":"10.1109/IRMMW-THZ.2018.8509851","DOIUrl":null,"url":null,"abstract":"This paper introduces beam-wave interaction of ridged sine waveguide and the design of sheet beam electron optical for 0.22THz backward wave oscillator (BWO). The electron gun which could create a sheet electron beam with thickness 0.05mm and width 0.4mm at waist position is used. The simulation result shows that the transmission current in the tunnel with 0.09mm thick and 1.2mm width is 15mA with 100% transmission. The result of beam-wave interaction shows that the signal with 1W and 16.4GHz bandwidth could be achieved by the ridged sine waveguide BWO.","PeriodicalId":6653,"journal":{"name":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"68 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2018.8509851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces beam-wave interaction of ridged sine waveguide and the design of sheet beam electron optical for 0.22THz backward wave oscillator (BWO). The electron gun which could create a sheet electron beam with thickness 0.05mm and width 0.4mm at waist position is used. The simulation result shows that the transmission current in the tunnel with 0.09mm thick and 1.2mm width is 15mA with 100% transmission. The result of beam-wave interaction shows that the signal with 1W and 16.4GHz bandwidth could be achieved by the ridged sine waveguide BWO.