Xavier Domínguez, Marcelo Pozo, Carlos Gallardo, L. Ortega
{"title":"Active power control of a Virtual Power Plant","authors":"Xavier Domínguez, Marcelo Pozo, Carlos Gallardo, L. Ortega","doi":"10.1109/ETCM.2016.7750850","DOIUrl":null,"url":null,"abstract":"The present work develops the entire control system to achieve the active power regulation in a detailed model of a small-scale Virtual Power Plant (VPP). Firstly, the proposed VPP topology is exposed. A DC bus has been used for the integration of the different distributed generators and the storage system. Different DC-DC power converters schemes have been employed to fulfill this goal. Later, by means of an Energy Management System strategy who commands a three-leg three-phase inverter having a suitable modulation technique, the control of the demanded active power is performed. The results exhibit successful responses of the system for both, dynamic and steady state.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"25 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The present work develops the entire control system to achieve the active power regulation in a detailed model of a small-scale Virtual Power Plant (VPP). Firstly, the proposed VPP topology is exposed. A DC bus has been used for the integration of the different distributed generators and the storage system. Different DC-DC power converters schemes have been employed to fulfill this goal. Later, by means of an Energy Management System strategy who commands a three-leg three-phase inverter having a suitable modulation technique, the control of the demanded active power is performed. The results exhibit successful responses of the system for both, dynamic and steady state.