Effective and Efficient Dimensionality Reduction of Hyperspectral Image using CNN and LSTM network

H. Tulapurkar, Biplab Banerjee, B. Mohan
{"title":"Effective and Efficient Dimensionality Reduction of Hyperspectral Image using CNN and LSTM network","authors":"H. Tulapurkar, Biplab Banerjee, B. Mohan","doi":"10.1109/InGARSS48198.2020.9358957","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) which is a feature-based machine learning algorithm is very popular in hyperspectral image (HSI) classification. CNN exploits the spatial relationship between HIS. However, HSI intrinsically have a sequence-based data structure called the spectral features. Combining spectral and spatial information offers a more comprehensive classification approach. 3D-CNN can exploit Spatial-spectral relationship but can be computationally expensive. LSTM, an important branch of the deep learning family, is mainly designed to handle Sequential data. In this paper we propose a model that uses the 1D CNN and 2D-CNN for extracting the spatial features and a LSTM for extracting the spectral features. Experimental results show that our method outperforms the accuracies reported in the existing CNN and LSTM based methods.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"114 1","pages":"213-216"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Convolutional neural networks (CNN) which is a feature-based machine learning algorithm is very popular in hyperspectral image (HSI) classification. CNN exploits the spatial relationship between HIS. However, HSI intrinsically have a sequence-based data structure called the spectral features. Combining spectral and spatial information offers a more comprehensive classification approach. 3D-CNN can exploit Spatial-spectral relationship but can be computationally expensive. LSTM, an important branch of the deep learning family, is mainly designed to handle Sequential data. In this paper we propose a model that uses the 1D CNN and 2D-CNN for extracting the spatial features and a LSTM for extracting the spectral features. Experimental results show that our method outperforms the accuracies reported in the existing CNN and LSTM based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN和LSTM网络的高光谱图像高效降维
卷积神经网络(CNN)是一种基于特征的机器学习算法,在高光谱图像分类中非常流行。CNN利用HIS之间的空间关系。然而,恒生指数本质上有一个基于序列的数据结构,称为光谱特征。结合光谱和空间信息提供了更全面的分类方法。3D-CNN可以利用空间-光谱关系,但计算成本很高。LSTM是深度学习家族的一个重要分支,主要用于处理序列数据。在本文中,我们提出了一个使用1D CNN和2d CNN提取空间特征和LSTM提取光谱特征的模型。实验结果表明,该方法的准确率优于现有的基于CNN和LSTM的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1