{"title":"Adaptive neural flight control system for helicopter","authors":"S. Suresh","doi":"10.1109/CISDA.2009.5356560","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive neural flight control design for helicopters performing nonlinear maneuver. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller uses a real-time learning dynamic radial basis function network, which uses Lyapunov based on-line update rule integrated with the neuron growth criterion. The real-time learning dynamic radial basis function network does not require a priori training and also find a compact network for implementation. The proposed adaptive law provide necessary global stability and better tracking performance. The simulation studies are carried-out using a nonlinear desktop simulation model. The performances of the proposed adaptive control mechanism clearly show that it is very effective when the helicopter is performing nonlinear maneuver.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"125 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents an adaptive neural flight control design for helicopters performing nonlinear maneuver. The control strategy uses a neural controller aiding an existing conventional controller. The neural controller uses a real-time learning dynamic radial basis function network, which uses Lyapunov based on-line update rule integrated with the neuron growth criterion. The real-time learning dynamic radial basis function network does not require a priori training and also find a compact network for implementation. The proposed adaptive law provide necessary global stability and better tracking performance. The simulation studies are carried-out using a nonlinear desktop simulation model. The performances of the proposed adaptive control mechanism clearly show that it is very effective when the helicopter is performing nonlinear maneuver.