Self-Assembly of Protein Fibrils in Microgravity

D. Bell, S. Durrance, D. Kirk, Hector Gutierrez, D. Woodard, J. Avendano, J. Sargent, Caroline Leite, Beatriz Saldana, Tucker Melles, Samantha Jackson, Shaohua Xu
{"title":"Self-Assembly of Protein Fibrils in Microgravity","authors":"D. Bell, S. Durrance, D. Kirk, Hector Gutierrez, D. Woodard, J. Avendano, J. Sargent, Caroline Leite, Beatriz Saldana, Tucker Melles, Samantha Jackson, Shaohua Xu","doi":"10.2478/gsr-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract Deposits of insoluble protein fibrils in human tissue are associated with amyloidosis and neurodegenerative diseases. Different proteins are involved in each disease; all are soluble in their native conformation in vivo, but by molecular self-assembly, they all form insoluble protein fibril deposits with a similar cross β-sheet structure. This paper reports the results of an experiment in molecular self-assembly carried out in microgravity on the International Space Station (ISS). The Self-Assembly in Biology and the Origin of Life (SABOL) experiment was designed to study the growth of lysozyme fibrils in microgravity. Lysozyme is a model protein that has been shown to replicate the aggregation processes of other amyloid proteins. Here the design and performance of the experimental hardware is described in detail. The flight experiment was carried to the ISS in the Dragon capsule of the SpaceX CRS-5 mission and returned to Earth after 32 days. The lysozyme fibrils formed in microgravity aboard the ISS show a distinctly different morphology compared to fibrils formed in the ground-control (G-C) experiment. The fibrils formed in microgravity are shorter, straighter, and thicker than those formed in the laboratory G-C experiment. For two incubation periods, (2) about 8.5 days and (3) about 14.5 days, the average ISS and G-C fibril diameters are respectively: Period 2DISS=7.5nm±31%,andDG‐C=3.4nm±31%Period 3DISS=6.2nm±33%,andDG‐C=3.6nm±33%. \\matrix{{Period\\,2} \\hfill & {} \\hfill & {{D_{ISS}} = 7.5{\\rm{nm}} \\pm 31\\% ,} \\hfill \\cr {} \\hfill & {\\rm and} \\hfill & {{D_{G - C}} = 3.4{\\rm{nm}} \\pm 31\\%} \\hfill \\cr {Period\\,3} \\hfill & {} \\hfill & {{D_{ISS}} = 6.2{\\rm{nm}} \\pm 33\\% ,} \\hfill \\cr {} \\hfill & {\\rm and} \\hfill & {{D_{G - C}} = 3.6{\\rm{nm}} \\pm 33\\% .}}","PeriodicalId":90510,"journal":{"name":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitational and space research : publication of the American Society for Gravitational and Space Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/gsr-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Deposits of insoluble protein fibrils in human tissue are associated with amyloidosis and neurodegenerative diseases. Different proteins are involved in each disease; all are soluble in their native conformation in vivo, but by molecular self-assembly, they all form insoluble protein fibril deposits with a similar cross β-sheet structure. This paper reports the results of an experiment in molecular self-assembly carried out in microgravity on the International Space Station (ISS). The Self-Assembly in Biology and the Origin of Life (SABOL) experiment was designed to study the growth of lysozyme fibrils in microgravity. Lysozyme is a model protein that has been shown to replicate the aggregation processes of other amyloid proteins. Here the design and performance of the experimental hardware is described in detail. The flight experiment was carried to the ISS in the Dragon capsule of the SpaceX CRS-5 mission and returned to Earth after 32 days. The lysozyme fibrils formed in microgravity aboard the ISS show a distinctly different morphology compared to fibrils formed in the ground-control (G-C) experiment. The fibrils formed in microgravity are shorter, straighter, and thicker than those formed in the laboratory G-C experiment. For two incubation periods, (2) about 8.5 days and (3) about 14.5 days, the average ISS and G-C fibril diameters are respectively: Period 2DISS=7.5nm±31%,andDG‐C=3.4nm±31%Period 3DISS=6.2nm±33%,andDG‐C=3.6nm±33%. \matrix{{Period\,2} \hfill & {} \hfill & {{D_{ISS}} = 7.5{\rm{nm}} \pm 31\% ,} \hfill \cr {} \hfill & {\rm and} \hfill & {{D_{G - C}} = 3.4{\rm{nm}} \pm 31\%} \hfill \cr {Period\,3} \hfill & {} \hfill & {{D_{ISS}} = 6.2{\rm{nm}} \pm 33\% ,} \hfill \cr {} \hfill & {\rm and} \hfill & {{D_{G - C}} = 3.6{\rm{nm}} \pm 33\% .}}
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微重力条件下蛋白原纤维的自组装
人体组织中不溶性蛋白原纤维的沉积与淀粉样变性和神经退行性疾病有关。每种疾病都涉及不同的蛋白质;它们在体内都是可溶的,但通过分子自组装,它们都形成了具有类似交叉β片结构的不溶性蛋白原纤维沉积物。本文报道了在国际空间站(ISS)上进行的微重力条件下分子自组装实验的结果。生物自组装与生命起源实验(SABOL)旨在研究在微重力条件下溶菌酶原纤维的生长。溶菌酶是一种模型蛋白,已被证明可以复制其他淀粉样蛋白的聚集过程。文中详细介绍了实验硬件的设计和性能。这次飞行实验是由SpaceX公司的CRS-5任务的“龙”太空舱运送到国际空间站的,并在32天后返回地球。在国际空间站微重力条件下形成的溶菌酶原纤维与在地面控制(G-C)实验中形成的原纤维形态明显不同。在微重力下形成的原纤维比在实验室G-C实验中形成的纤维更短、更直、更厚。在(2)约8.5天和(3)约14.5天的两个孵育期,ISS和G-C的平均纤维直径分别为:周期2DISS=7.5nm±31%,dg‐C=3.4nm±31%;周期3DISS=6.2nm±33%,dg‐C=3.6nm±33%。\ \矩阵{{时期,2}\ hfill & {} \ hfill & {{D_{空间站}}= 7.5 {\ rm {nm}} 31日下午\ \ %}\ hfill \ cr {} \ hfill & {\ rm和}\ hfill & {{D_ {G - C}} = 3.4 {\ rm {nm}} \点31 \ %}\ hfill \ cr{\时期,3}\ hfill & {} \ hfill & {{D_{空间站}}= 6.2 {\ rm {nm}} \点33 \ %}\ hfill \ cr {} \ hfill & {\ rm和}\ hfill & {{D_ {G - C}} = 3.6 {\ rm {nm}} \点33 \ %。}}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Effects of Simulated and Real Microgravity on Vascular Smooth Muscle Cells. Design, Build and Testing of Hardware to Safely Harvest Microgreens in Microgravity A Novel Approach to Teaching a General Education Course on Astrobiology Nonlinear Agglomeration of Bimodal Colloids under Microgravity Design of Spaceflight Hardware for Plant Growth in a Sealed Habitat for Experiments on the Moon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1