Beya Heritier, Rowayda F. Mahmoud, A. El Saghir, M. Shaat, A. Badawi
{"title":"Safety assessment and management of spent nuclear fuel for TRIGA mark II research reactor","authors":"Beya Heritier, Rowayda F. Mahmoud, A. El Saghir, M. Shaat, A. Badawi","doi":"10.1515/kern-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"55 1","pages":"615 - 624"},"PeriodicalIF":0.4000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Democratic Republic of Congo (DRC) has a TRIGA mark II research reactor called TRICO II, its design power is 1.00 MW. The reactor was in extended shutdown state since November 2004. The DRC government has decided to resume its operation using the last uploaded core. One of the safety features to be determined before putting the spent fuel into the reactor core is the calculation of its excess reactivity, radionuclide inventories as well as its discharge burn-up. The spent fuel was modeled and simulated by using Monte Carlo software, MCNPX code. The input data and the horizontal and vertical modeling for the fuel pins, control rods and moderator were done. The model results were validated by calculating the effective delayed neutron fraction (β eff) and the worth of the control rods. The results of the criticality and fuel burn-up were compared with the reference design parameters and with the experimental measurements and it were found in good agreement. The calculations showed that the last uploaded core has 47.00 g of 235U which represent only 2% of fissile materials. The depletion analysis results showed that the highest radio-activities come from 151Sm, 137Cs, 90Y, 90Sr and 85Kr.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).