Learning Object-Level Spatio-Temporal Representation for Abnormal Event Detection

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS Modeling Identification and Control Pub Date : 2017-01-01 DOI:10.2316/P.2017.848-013
Jongmin Yu, Sejeong Lee, M. Jeon
{"title":"Learning Object-Level Spatio-Temporal Representation for Abnormal Event Detection","authors":"Jongmin Yu, Sejeong Lee, M. Jeon","doi":"10.2316/P.2017.848-013","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for abnormal event detection, using the object-level spatio-temporal representation. Our approach detects an abnormal event in complex scenes which contain objects classified in various categories. We compute the object-level 3D Region-of-interest (3D RoI) and extract object-level 3D volume. Then, the object-level 3D volume is inputted to 3D deep convolutional neural network (3D-DCNN) for detecting the abnormal event. In the experiments, we compare our method with several methods on our experimental dataset.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"605 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an approach for abnormal event detection, using the object-level spatio-temporal representation. Our approach detects an abnormal event in complex scenes which contain objects classified in various categories. We compute the object-level 3D Region-of-interest (3D RoI) and extract object-level 3D volume. Then, the object-level 3D volume is inputted to 3D deep convolutional neural network (3D-DCNN) for detecting the abnormal event. In the experiments, we compare our method with several methods on our experimental dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习对象级时空表征的异常事件检测
在本文中,我们提出了一种使用对象级时空表示的异常事件检测方法。我们的方法可以在包含不同类别的对象的复杂场景中检测异常事件。计算对象级三维感兴趣区域(3D RoI),提取对象级三维体。然后,将物体级三维体输入到三维深度卷积神经网络(3D- dcnn)中进行异常事件检测。在实验中,我们将该方法与实验数据集上的几种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
期刊最新文献
Programming Fine Manufacturing Tasks on Collaborative Robots: A Case Study on Industrial Gluing Microevolutionary system identification and climate response predictions by use of BLUP prediction error method Improving Energy Efficiency and Response Time of an Offshore Winch Drive with Digital Displacement Motors A Novel Control Design for Realizing Passive Load-Holding Function on a Two-Motor-Two-Pump Motor-Controlled Hydraulic Cylinder Construct, Merge, Solve and Adapt Applied to the Maximum Disjoint Dominating Sets Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1