Structure and Composition of the Tunic in the Sea Pineapple Halocynthia Roretzi: A Complex Cellulosic Composite Biomaterial

P. Flammang, Geonho Song, J. Delroisse, Dorian Schoenaers, Hyungbin Kim, Thai Cuong Nguyen, P. Leclère, D. Hwang, M. Harrington
{"title":"Structure and Composition of the Tunic in the Sea Pineapple Halocynthia Roretzi: A Complex Cellulosic Composite Biomaterial","authors":"P. Flammang, Geonho Song, J. Delroisse, Dorian Schoenaers, Hyungbin Kim, Thai Cuong Nguyen, P. Leclère, D. Hwang, M. Harrington","doi":"10.2139/ssrn.3518165","DOIUrl":null,"url":null,"abstract":"Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton known as a tunic; however, currently, very little is understood about the detailed structure and composition of this cellulosic biocomposite. Here, we investigate the composition and hierarchical structure of the tough tunic from the species <i>Halocynthia roretzi</i>, through a cross-disciplinary approach combining traditional histology, immunohistochemistry, vibrational spectroscopy, X-ray diffraction, and atomic force and electron microscopies. The picture emerging is that the tunic of <i>H. roretz</i>i is a hierarchically-structured composite of cellulose and proteins with several compositionally and structurally distinct zones. At the surface is a thin sclerotized cuticular layer with elevated composition of protein containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised primarily of well-ordered crystalline cellulose fibres with a lower protein content. The subcuticular zone directly beneath the surface contains much less organized cellulose fibres. Given current efforts to utilize biorenewable cellulose sources for the sustainable production of bio-inspired composites, these insights establish the tunic of <i>H. roretzi</i> as an exciting new archetype for extracting relevant design principles.","PeriodicalId":8928,"journal":{"name":"Biomaterials eJournal","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3518165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological organisms produce high-performance composite materials, such as bone, wood and insect cuticle, which provide inspiration for the design of novel materials. Ascidians (sea squirts) produce an organic exoskeleton known as a tunic; however, currently, very little is understood about the detailed structure and composition of this cellulosic biocomposite. Here, we investigate the composition and hierarchical structure of the tough tunic from the species Halocynthia roretzi, through a cross-disciplinary approach combining traditional histology, immunohistochemistry, vibrational spectroscopy, X-ray diffraction, and atomic force and electron microscopies. The picture emerging is that the tunic of H. roretzi is a hierarchically-structured composite of cellulose and proteins with several compositionally and structurally distinct zones. At the surface is a thin sclerotized cuticular layer with elevated composition of protein containing halogenated amino acids and cross-linked via dityrosine linkages. The fibrous layer makes up the bulk of the tunic and is comprised primarily of well-ordered crystalline cellulose fibres with a lower protein content. The subcuticular zone directly beneath the surface contains much less organized cellulose fibres. Given current efforts to utilize biorenewable cellulose sources for the sustainable production of bio-inspired composites, these insights establish the tunic of H. roretzi as an exciting new archetype for extracting relevant design principles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种复杂的纤维素复合生物材料——海凤梨海葵外衣的结构和组成
生物有机体产生的高性能复合材料,如骨骼、木材和昆虫角质层,为新型材料的设计提供了灵感。海鞘(海鞘)产生一种被称为外衣的有机外骨骼;然而,目前,对这种纤维素生物复合材料的详细结构和组成知之甚少。在此,我们通过结合传统组织学、免疫组织化学、振动光谱学、x射线衍射、原子力和电子显微镜的跨学科方法,研究了盐藻(Halocynthia roretzi)韧囊的组成和层次结构。目前的情况是,H. roretzi的外衣是纤维素和蛋白质的分层结构复合物,具有几个组成和结构不同的区域。表面是一层薄薄的硬化角质层,含有卤化氨基酸的蛋白质组成升高,并通过二酪氨酸键交联。纤维层构成了外衣的大部分,主要由有序的结晶纤维素纤维组成,蛋白质含量较低。表皮下的角质层含有较少的有组织的纤维素纤维。鉴于目前利用生物可再生纤维素资源可持续生产生物启发复合材料的努力,这些见解确立了H. roretzi束腰衣作为提取相关设计原则的令人兴奋的新原型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hemostatic Shape Memory Polymer Foams With Improved Survival in a Lethal Traumatic Hemorrhage Model Cochlear Implant-Based Electric-Acoustic Stimulation Modulates Neural Stem Cell-Derived Neural Regeneration Magnetic Mesoporous Embolic Microspheres in Transcatheter Arterial Chemoembolization for Liver Cancer Examining How Different Carbon Entry Point Affects Recombinant Protein Production from Ethylene Glycol in Bacillus Subtilis Printable Smart 3D Architectures of Regenerated Silk on Poly(3- Hydroxybutyrate-Co-3-Hydroxyvalerate)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1