Segmentation of brain MR images using an adaptively regularized kernel FCM algorithm with spatial constraints

Ran Fang, Yinan Lu, Xiaoni Liu, Zhuo Liu
{"title":"Segmentation of brain MR images using an adaptively regularized kernel FCM algorithm with spatial constraints","authors":"Ran Fang, Yinan Lu, Xiaoni Liu, Zhuo Liu","doi":"10.1109/CISP-BMEI.2017.8302201","DOIUrl":null,"url":null,"abstract":"FCM algorithm is a popular algorithm for medical image segmentation. The precise process of segmenting brain tissue images becomes more challenging in the presence of noise and other image artifacts. An improved adaptively regularized kernel FCM method is proposed in this paper. The spatial constraint function of membership is introduced to enhance clustering by adjusting the degree of influence between pixels and clustering centers. Experimental results on the brain images with different types and levels of noises demonstrate that the improved algorithm increases the accuracy of segmentation compared with the other soft clustering algorithms.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"114 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

FCM algorithm is a popular algorithm for medical image segmentation. The precise process of segmenting brain tissue images becomes more challenging in the presence of noise and other image artifacts. An improved adaptively regularized kernel FCM method is proposed in this paper. The spatial constraint function of membership is introduced to enhance clustering by adjusting the degree of influence between pixels and clustering centers. Experimental results on the brain images with different types and levels of noises demonstrate that the improved algorithm increases the accuracy of segmentation compared with the other soft clustering algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间约束的自适应正则化核FCM脑磁共振图像分割
FCM算法是一种流行的医学图像分割算法。在存在噪声和其他图像伪影的情况下,脑组织图像的精确分割过程变得更具挑战性。提出了一种改进的自适应正则化核FCM方法。引入隶属度的空间约束函数,通过调整像素与聚类中心之间的影响程度来增强聚类。实验结果表明,与其他软聚类算法相比,改进算法提高了分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1