Remote powered medical implants

T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer, R. Weigel
{"title":"Remote powered medical implants","authors":"T. Ussmueller, D. Brenk, J. Essel, J. Heidrich, G. Fischer, R. Weigel","doi":"10.1109/IMWS-BIO.2013.6756186","DOIUrl":null,"url":null,"abstract":"Healthcare of the future will rely on lots of sensor devices especially long term monitoring sensors. In order to gain acceptance by the patients these devices have to be completely imperceptible and maintenance free. A solution to these requirements is a remote powered implantable sensor system. One of the biggest challenges of such systems is the power supply. Ideal sensor systems do not require any kind of battery for reliable operation. Instead they harvest the energy from the electromagnetic field of the interrogating device. In this talk a possible solution to this problem will be presented. The sensor system is based on an integrated circuit, which consists of a backscattering transceiver and an ultra-low-power analog-to-digital converter (ADC) for sensor data acquisition. With its power consumption of less than 10 μ\\ν incl. the ADC, it is possible to harvest the energy from the electromagnetic field and supply the complete ASIC.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"70 5 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Healthcare of the future will rely on lots of sensor devices especially long term monitoring sensors. In order to gain acceptance by the patients these devices have to be completely imperceptible and maintenance free. A solution to these requirements is a remote powered implantable sensor system. One of the biggest challenges of such systems is the power supply. Ideal sensor systems do not require any kind of battery for reliable operation. Instead they harvest the energy from the electromagnetic field of the interrogating device. In this talk a possible solution to this problem will be presented. The sensor system is based on an integrated circuit, which consists of a backscattering transceiver and an ultra-low-power analog-to-digital converter (ADC) for sensor data acquisition. With its power consumption of less than 10 μ\ν incl. the ADC, it is possible to harvest the energy from the electromagnetic field and supply the complete ASIC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远程供电医疗植入物
未来的医疗保健将依赖于大量的传感器设备,特别是长期监测传感器。为了获得患者的接受,这些装置必须是完全难以察觉和免维护的。一个解决这些需求的方案是远程供电植入式传感器系统。这种系统最大的挑战之一是电力供应。理想的传感器系统不需要任何类型的电池来可靠运行。相反,他们从审讯装置的电磁场中获取能量。在这次演讲中,我们将提出这个问题的一个可能的解决方案。该传感器系统基于集成电路,由后向散射收发器和用于传感器数据采集的超低功耗模数转换器(ADC)组成。它的功耗小于10 μ ν(包括ADC),可以从电磁场中收集能量并提供完整的ASIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee Organizing committee Fast, compact and label-free electrical detection of live and dead single cells Why headache using GSM cellular phones? An investigation of microwave ablation for bone thermal drilling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1