Evaluation of Solvent Compatibilities for Headspace-SIFT-MS Analysis of Pharmaceutical Products

Analytica Pub Date : 2023-07-12 DOI:10.3390/analytica4030024
M. Perkins, Leslie P. Silva, V. Langford
{"title":"Evaluation of Solvent Compatibilities for Headspace-SIFT-MS Analysis of Pharmaceutical Products","authors":"M. Perkins, Leslie P. Silva, V. Langford","doi":"10.3390/analytica4030024","DOIUrl":null,"url":null,"abstract":"Procedures for determination of the residual solvent and volatile impurity content in pharmaceutical products usually rely on dissolution in a solvent, followed by headspace-gas chromatography (HS-GC) analysis. Whereas chromatographic systems can utilize a wide variety of solvents, direct-injection mass spectrometry (DIMS) techniques have fewer solvent options, because elimination of the chromatographic column means that the instrument is more susceptible to saturation. Since water has the lowest impact, it has almost always been the default solvent for DIMS. In this study, selected ion flow tube mass spectrometry (SIFT-MS)—a DIMS technique—was applied to the systematic evaluation of the proportion of solvent that can be utilized (with aqueous diluent) without causing instrument saturation and while maintaining satisfactory analytical performance. The solvents evaluated were N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), methanol, and triacetin. All solvents are compatible with headspace-SIFT-MS analysis at 5% (min) in water, while DMI, DMAC, and DMSO can be used at higher concentrations (50, 100, and 25%, respectively), though suffering substantial diminution of the limit of quantitation for non-polar analytes at higher proportions of non-aqueous solvent. Analytical performance was also evaluated using linearity, repeatability, and recovery measurements. This work demonstrates that organic solvents diluted in water can be utilized with headspace-SIFT-MS and provide an approach for evaluation of additional diluent solvents.","PeriodicalId":7829,"journal":{"name":"Analytica","volume":"1048 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytica4030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Procedures for determination of the residual solvent and volatile impurity content in pharmaceutical products usually rely on dissolution in a solvent, followed by headspace-gas chromatography (HS-GC) analysis. Whereas chromatographic systems can utilize a wide variety of solvents, direct-injection mass spectrometry (DIMS) techniques have fewer solvent options, because elimination of the chromatographic column means that the instrument is more susceptible to saturation. Since water has the lowest impact, it has almost always been the default solvent for DIMS. In this study, selected ion flow tube mass spectrometry (SIFT-MS)—a DIMS technique—was applied to the systematic evaluation of the proportion of solvent that can be utilized (with aqueous diluent) without causing instrument saturation and while maintaining satisfactory analytical performance. The solvents evaluated were N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), 1,3-dimethyl-2-imidazolidinone (DMI), dimethyl sulfoxide (DMSO), methanol, and triacetin. All solvents are compatible with headspace-SIFT-MS analysis at 5% (min) in water, while DMI, DMAC, and DMSO can be used at higher concentrations (50, 100, and 25%, respectively), though suffering substantial diminution of the limit of quantitation for non-polar analytes at higher proportions of non-aqueous solvent. Analytical performance was also evaluated using linearity, repeatability, and recovery measurements. This work demonstrates that organic solvents diluted in water can be utilized with headspace-SIFT-MS and provide an approach for evaluation of additional diluent solvents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药品顶空- sift - ms分析中溶剂相容性评价
测定药品中残留溶剂和挥发性杂质含量的方法通常依赖于溶剂溶解,然后进行顶空-气相色谱(HS-GC)分析。虽然色谱系统可以使用多种溶剂,但直接进样质谱(DIMS)技术的溶剂选择较少,因为取消色谱柱意味着仪器更容易饱和。由于水的影响最小,所以它几乎一直是DIMS的默认溶剂。在本研究中,选择离子流管质谱(SIFT-MS) -一种DIMS技术-被用于系统评估溶剂的比例,可以利用(与水稀释剂),而不会导致仪器饱和,同时保持令人满意的分析性能。溶剂分别为N,N-二甲基乙酰胺(DMAC)、N,N-二甲基甲酰胺(DMF)、1,3-二甲基-2-咪唑烷酮(DMI)、二甲亚砜(DMSO)、甲醇和三乙酸酯。所有溶剂在5% (min)的水中都与顶空- sift - ms分析兼容,而DMI、DMAC和DMSO可以在更高的浓度(分别为50%、100和25%)下使用,尽管在更高比例的非水溶剂下,非极性分析物的定量极限会大大降低。分析性能也通过线性、可重复性和回收率测量进行评估。这项工作表明,在水中稀释的有机溶剂可以与顶空sift - ms一起使用,并为评价额外的稀释溶剂提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Enteromorpha compressa Macroalgal Biomass Nanoparticles as Eco-Friendly Biosorbents for the Efficient Removal of Harmful Metals from Aqueous Solutions Assessment of Lycopene Levels in Dried Watermelon Pomace: A Sustainable Approach to Waste Reduction and Nutrient Valorization Development of a Paper-Based Sol–Gel Vapochromic Sensor for the Detection of Vapor Cross-Contamination within a Closed Container Advances in the Use of Four Synthetic Antioxidants as Food Additives for Enhancing the Oxidative Stability of Refined Sunflower Oil (Helianthus annuus L.) Detection of Gene Doping Using Dried Blood Spots from a Mouse Model with rAAV9 Vector-Mediated Human Erythropoietin Expression as a Pilot Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1