{"title":"Investigation of Mixing in Tanks of a Special Geometry","authors":"B. Tarcsay, A. Egedy, J. Bobek, Dóra Rippel-Pethő","doi":"10.33927/hjic-2019-21","DOIUrl":null,"url":null,"abstract":"Mixing is one of the most crucial processes in the chemical industry. Homogeneity is a requirement for all feedstocks and industrial products. The degree of mixing depends on the hydrodynamic properties of the fluid in the units. The Residence Time Distribution (RTD) was investigated in a tank of a special geometry. Mixing was investigated using various geometries of the tank by applying the Heaviside function in step-response experiments. After obtaining experimental results, the RTD function was calculated. The flow structure in the tank was approximated by fitting black-box transfer function models onto the RTD function of the system. Two general model structures were defined and their fitness compared. By evaluating the fitted models, a relationship was established between the flow structure in the tank and its geometry.","PeriodicalId":13010,"journal":{"name":"Hungarian Journal of Industrial Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industrial Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33927/hjic-2019-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Mixing is one of the most crucial processes in the chemical industry. Homogeneity is a requirement for all feedstocks and industrial products. The degree of mixing depends on the hydrodynamic properties of the fluid in the units. The Residence Time Distribution (RTD) was investigated in a tank of a special geometry. Mixing was investigated using various geometries of the tank by applying the Heaviside function in step-response experiments. After obtaining experimental results, the RTD function was calculated. The flow structure in the tank was approximated by fitting black-box transfer function models onto the RTD function of the system. Two general model structures were defined and their fitness compared. By evaluating the fitted models, a relationship was established between the flow structure in the tank and its geometry.