A. Kuroda, K. Minami, T. Yamasaki, J. Nara, J. Koga, T. Uda, T. Ohno
{"title":"Poster: Planewave-Based First-Principles MD Calculation on 80,000-node K-Computer","authors":"A. Kuroda, K. Minami, T. Yamasaki, J. Nara, J. Koga, T. Uda, T. Ohno","doi":"10.1109/SC.Companion.2012.281","DOIUrl":null,"url":null,"abstract":"We show the efficiency of a first-principles electronic structure calculation code, PHASE on the massive-parallel super computer, K, which has 80,000 nodes. This code is based on plane-wave basis set, thus FFT routines are included. We succeeded in parallelization of FFT routines needed in our code by localizing each FFT calculation in small number of nodes, resulting in decreasing communication time required for FFT calculation. We also introduce multi-axis parallelization for bands and plane waves and then PHASE shows very high parallel efficiency. By using this code, we have investigated the structural stability of screw dislocations in silicon carbide, which has attracted much attention due to the semiconductor industry importance.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"616 1","pages":"1491-1492"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show the efficiency of a first-principles electronic structure calculation code, PHASE on the massive-parallel super computer, K, which has 80,000 nodes. This code is based on plane-wave basis set, thus FFT routines are included. We succeeded in parallelization of FFT routines needed in our code by localizing each FFT calculation in small number of nodes, resulting in decreasing communication time required for FFT calculation. We also introduce multi-axis parallelization for bands and plane waves and then PHASE shows very high parallel efficiency. By using this code, we have investigated the structural stability of screw dislocations in silicon carbide, which has attracted much attention due to the semiconductor industry importance.