Ye Yuan, Liangzhuo Xie, Yewen Zhu, Sheng Wang, Zhemin Zhuang
{"title":"SAR image de-noising using local properties analysis and discrete non-separable shearlet transform","authors":"Ye Yuan, Liangzhuo Xie, Yewen Zhu, Sheng Wang, Zhemin Zhuang","doi":"10.1109/CISP-BMEI.2017.8301960","DOIUrl":null,"url":null,"abstract":"A new SAR image de-noising approach that uses the local properties analysis of SAR image and the discrete nonseparable shearlet transform (DNST) is proposed in this paper. According to the local properties analysis method, the SAR image is divided into homogeneous region, non-homogeneous region and target region. The homogeneous region uses the average filter to de-noising. The non-homogeneous region uses the DNST transform to de-noising and target region is reserved directly. The experimental results show that the proposed approach can efficiently reduce the speckle noises and improve the edge-preserving ability.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"33 7-8 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8301960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A new SAR image de-noising approach that uses the local properties analysis of SAR image and the discrete nonseparable shearlet transform (DNST) is proposed in this paper. According to the local properties analysis method, the SAR image is divided into homogeneous region, non-homogeneous region and target region. The homogeneous region uses the average filter to de-noising. The non-homogeneous region uses the DNST transform to de-noising and target region is reserved directly. The experimental results show that the proposed approach can efficiently reduce the speckle noises and improve the edge-preserving ability.