No-reference image visual quality assessment using nonlinear regression

Martin D. Dimitrievski, Z. Ivanovski, T. Kartalov
{"title":"No-reference image visual quality assessment using nonlinear regression","authors":"Martin D. Dimitrievski, Z. Ivanovski, T. Kartalov","doi":"10.1109/QoMEX.2011.6065716","DOIUrl":null,"url":null,"abstract":"In this paper, a novel no-reference image visual quality metric is proposed based on fusion of statistical and human visual system based metrics using ε-Support Vector Regression. Different order polynomial regression was also examined as an approximation that has lower computational complexity. Compared to existing image quality assessment metrics, the proposed fused metric is able to better quantify the image quality regardless of the type of degradation. We furthermore improve the image quality assessment by training a separate regression model for each degradation type. The latter degradation specific approach yields near perfect correlation with subjective scores, however, it relies on prior knowledge of the degradation process.","PeriodicalId":6441,"journal":{"name":"2011 Third International Workshop on Quality of Multimedia Experience","volume":"50 1","pages":"78-83"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Workshop on Quality of Multimedia Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2011.6065716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a novel no-reference image visual quality metric is proposed based on fusion of statistical and human visual system based metrics using ε-Support Vector Regression. Different order polynomial regression was also examined as an approximation that has lower computational complexity. Compared to existing image quality assessment metrics, the proposed fused metric is able to better quantify the image quality regardless of the type of degradation. We furthermore improve the image quality assessment by training a separate regression model for each degradation type. The latter degradation specific approach yields near perfect correlation with subjective scores, however, it relies on prior knowledge of the degradation process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非线性回归的无参考图像视觉质量评价
基于ε-支持向量回归,提出了一种新的基于统计和人类视觉系统的无参考图像视觉质量度量方法。不同阶多项式回归也被检验为具有较低的计算复杂度的近似。与现有的图像质量评估指标相比,所提出的融合指标能够更好地量化图像质量,而不考虑退化的类型。我们进一步通过为每个退化类型训练单独的回归模型来改进图像质量评估。后一种特定的退化方法与主观得分产生接近完美的相关性,然而,它依赖于退化过程的先验知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web Browsing Audio Transmission Evoking Emotions and Evaluating Emotional Impact Quality of Experience Versus User Experience Crowdsourcing in QoE Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1