Shuang Hao, G. Song, Juzheng Mao, Y.-L. Gu, Aiguo Song
{"title":"A fully actuated aerial manipulator system for industrial contact inspection applications","authors":"Shuang Hao, G. Song, Juzheng Mao, Y.-L. Gu, Aiguo Song","doi":"10.1108/ir-07-2022-0184","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.\n\n\nDesign/methodology/approach\nAn AM is designed based on a hexarotor with tilted rotors and a rigidly attached end effector. By tilting the rotors, the position and attitude of the AM can be controlled independently, and the AM can actively exert forces on industrial facilities through the rigidly attached end effector. A motion/force hybrid controller is proposed to perform contact-typed inspection tasks. The contact-typed inspection task is divided into the approach phase and the contact phase. In the approach phase, the AM automatically approaches the contact surface. In the contact phase, a motion/force hybrid controller is used for contact-typed inspection. Finally, a disturbance observer (DOB) is used to estimate external disturbances and used as feedforward compensation.\n\n\nFindings\nThe proposed AM can slowly approach the contact surface without significant impact in the contact phase. It can realize constant force control in the direction normal to the contact surface in the contact phase, whereas the motion of the remaining directions can be controlled by the operator. The use of the DOB ensures the robustness of the AM in the presence of external wind disturbances.\n\n\nOriginality/value\nA fully actuated AM system with a robust motion/force hybrid controller is proposed. The effectiveness of the proposed AM system for conducting contact-typed industrial inspection tasks is validated by practical experiments.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"18 1","pages":"421-431"},"PeriodicalIF":1.9000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-07-2022-0184","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.
Design/methodology/approach
An AM is designed based on a hexarotor with tilted rotors and a rigidly attached end effector. By tilting the rotors, the position and attitude of the AM can be controlled independently, and the AM can actively exert forces on industrial facilities through the rigidly attached end effector. A motion/force hybrid controller is proposed to perform contact-typed inspection tasks. The contact-typed inspection task is divided into the approach phase and the contact phase. In the approach phase, the AM automatically approaches the contact surface. In the contact phase, a motion/force hybrid controller is used for contact-typed inspection. Finally, a disturbance observer (DOB) is used to estimate external disturbances and used as feedforward compensation.
Findings
The proposed AM can slowly approach the contact surface without significant impact in the contact phase. It can realize constant force control in the direction normal to the contact surface in the contact phase, whereas the motion of the remaining directions can be controlled by the operator. The use of the DOB ensures the robustness of the AM in the presence of external wind disturbances.
Originality/value
A fully actuated AM system with a robust motion/force hybrid controller is proposed. The effectiveness of the proposed AM system for conducting contact-typed industrial inspection tasks is validated by practical experiments.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.