5D Covariance tracing for efficient defocus and motion blur

Laurent Belcour, C. Soler, K. Subr, Nicolas Holzschuch, F. Durand
{"title":"5D Covariance tracing for efficient defocus and motion blur","authors":"Laurent Belcour, C. Soler, K. Subr, Nicolas Holzschuch, F. Durand","doi":"10.1145/2487228.2487239","DOIUrl":null,"url":null,"abstract":"The rendering of effects such as motion blur and depth-of-field requires costly 5D integrals. We accelerate their computation through adaptive sampling and reconstruction based on the prediction of the anisotropy and bandwidth of the integrand. For this, we develop a new frequency analysis of the 5D temporal light-field, and show that first-order motion can be handled through simple changes of coordinates in 5D. We further introduce a compact representation of the spectrum using the covariance matrix and Gaussian approximations. We derive update equations for the 5 × 5 covariance matrices for each atomic light transport event, such as transport, occlusion, BRDF, texture, lens, and motion. The focus on atomic operations makes our work general, and removes the need for special-case formulas. We present a new rendering algorithm that computes 5D covariance matrices on the image plane by tracing paths through the scene, focusing on the single-bounce case. This allows us to reduce sampling rates when appropriate and perform reconstruction of images with complex depth-of-field and motion blur effects.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"39 1","pages":"31:1-31:18"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487228.2487239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80

Abstract

The rendering of effects such as motion blur and depth-of-field requires costly 5D integrals. We accelerate their computation through adaptive sampling and reconstruction based on the prediction of the anisotropy and bandwidth of the integrand. For this, we develop a new frequency analysis of the 5D temporal light-field, and show that first-order motion can be handled through simple changes of coordinates in 5D. We further introduce a compact representation of the spectrum using the covariance matrix and Gaussian approximations. We derive update equations for the 5 × 5 covariance matrices for each atomic light transport event, such as transport, occlusion, BRDF, texture, lens, and motion. The focus on atomic operations makes our work general, and removes the need for special-case formulas. We present a new rendering algorithm that computes 5D covariance matrices on the image plane by tracing paths through the scene, focusing on the single-bounce case. This allows us to reduce sampling rates when appropriate and perform reconstruction of images with complex depth-of-field and motion blur effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5D协方差跟踪,高效散焦和运动模糊
运动模糊和景深等效果的渲染需要昂贵的5D积分。基于对被积体各向异性和带宽的预测,通过自适应采样和重构来加快其计算速度。为此,我们开发了一种新的5D时间光场的频率分析方法,并表明可以通过简单的5D坐标变化来处理一阶运动。我们进一步使用协方差矩阵和高斯近似引入频谱的紧凑表示。我们推导了每个原子光传输事件(如传输、遮挡、BRDF、纹理、透镜和运动)的5 × 5协方差矩阵的更新方程。对原子操作的关注使我们的工作具有通用性,并且消除了对特殊情况公式的需要。我们提出了一种新的渲染算法,通过跟踪场景的路径来计算图像平面上的5D协方差矩阵,重点关注单反弹情况。这允许我们在适当的时候降低采样率,并对具有复杂景深和运动模糊效果的图像进行重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LuisaRender: A High-Performance Rendering Framework with Layered and Unified Interfaces on Stream Architectures BoolSurf: Boolean Operations on Surfaces SkinMixer: Blending 3D Animated Models PopStage: The Generation of Stage Cross-Editing Video Based on Spatio-Temporal Matching QuadStream: A Quad-Based Scene Streaming Architecture for Novel Viewpoint Reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1