Botnet Detection in IoT Devices Using Random Forest Classifier with Independent Component Analysis

Nazmus Sakib Akash, Shakir Rouf, Sigma Jahan, Amlan Chowdhury, J. Uddin
{"title":"Botnet Detection in IoT Devices Using Random Forest Classifier with Independent Component Analysis","authors":"Nazmus Sakib Akash, Shakir Rouf, Sigma Jahan, Amlan Chowdhury, J. Uddin","doi":"10.32890/jict2022.21.2.3","DOIUrl":null,"url":null,"abstract":"With rapid technological progress in the Internet of Things (IoT), it has become imperative to concentrate on its security aspect. This paper represents a model that accounts for the detection of botnets through the use of machine learning algorithms. The model examined anomalies, commonly referred to as botnets, in a cluster of IoT devices attempting to connect to a network. Essentially, this paper exhibited the use of transport layer data (User Datagram Protocol- UDP) generated through IoT devices. An intelligent novel model comprising Random Forest Classifier with Independent Component Analysis (ICA) was proposed for botnet detection in IoT devices. Various machine learning algorithms were also implemented upon the processed data for comparative analysis. The experimental results of the proposed model generated state-of-the-art results for three different datasets, achieving up to 99.99% accuracy effectively with the lowest prediction time of 0.12 seconds without overfitting. The significance of this study lies in detecting botnets in IoT devices effectively and efficiently under all circumstances by utilizing ICA with Random Forest Classifier, which is a simple machine learning algorithm.","PeriodicalId":39396,"journal":{"name":"International Journal of Information and Communication Technology","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32890/jict2022.21.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

With rapid technological progress in the Internet of Things (IoT), it has become imperative to concentrate on its security aspect. This paper represents a model that accounts for the detection of botnets through the use of machine learning algorithms. The model examined anomalies, commonly referred to as botnets, in a cluster of IoT devices attempting to connect to a network. Essentially, this paper exhibited the use of transport layer data (User Datagram Protocol- UDP) generated through IoT devices. An intelligent novel model comprising Random Forest Classifier with Independent Component Analysis (ICA) was proposed for botnet detection in IoT devices. Various machine learning algorithms were also implemented upon the processed data for comparative analysis. The experimental results of the proposed model generated state-of-the-art results for three different datasets, achieving up to 99.99% accuracy effectively with the lowest prediction time of 0.12 seconds without overfitting. The significance of this study lies in detecting botnets in IoT devices effectively and efficiently under all circumstances by utilizing ICA with Random Forest Classifier, which is a simple machine learning algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立分量分析的随机森林分类器在物联网设备中的僵尸网络检测
随着物联网(IoT)技术的快速进步,关注其安全方面已成为当务之急。本文代表了一个通过使用机器学习算法来检测僵尸网络的模型。该模型检查了试图连接到网络的物联网设备集群中的异常情况,通常称为僵尸网络。从本质上讲,本文展示了通过物联网设备生成的传输层数据(用户数据报协议- UDP)的使用。针对物联网设备中的僵尸网络检测问题,提出了一种基于独立分量分析的随机森林分类器智能模型。在处理后的数据上实现各种机器学习算法进行对比分析。实验结果表明,该模型在三个不同的数据集上得到了最先进的结果,有效地达到了99.99%的准确率,最低预测时间为0.12秒,没有过拟合。本研究的意义在于利用ICA与Random Forest Classifier这一简单的机器学习算法,在任何情况下都能有效高效地检测IoT设备中的僵尸网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
95
期刊介绍: IJICT is a refereed journal in the field of information and communication technology (ICT), providing an international forum for professionals, engineers and researchers. IJICT reports the new paradigms in this emerging field of technology and envisions the future developments in the frontier areas. The journal addresses issues for the vertical and horizontal applications in this area. Topics covered include: -Information theory/coding- Information/IT/network security, standards, applications- Internet/web based systems/products- Data mining/warehousing- Network planning, design, administration- Sensor/ad hoc networks- Human-computer intelligent interaction, AI- Computational linguistics, digital speech- Distributed/cooperative media- Interactive communication media/content- Social interaction, mobile communications- Signal representation/processing, image processing- Virtual reality, cyber law, e-governance- Microprocessor interfacing, hardware design- Control of industrial processes, ERP/CRM/SCM
期刊最新文献
A Huffman based short message service compression technique using adjacent distance array Machine Learning Models for Behavioural Diversity of Asian Elephants Prediction Using Satellite Collar Data Visually Impaired Usability Requirements for Accessible Mobile Applications: A Checklist for Mobile E-book Applications Dengue Outbreak Detection Model Using Artificial Immune System: A Malaysian Case Study Modelling and Forecasting the Trend in Cryptocurrency Prices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1