{"title":"Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function","authors":"Junya Konno, A. Nezu, H. Matsuura, H. Akatsuka","doi":"10.1515/jaots-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract We develop numerical model to discuss the number density and excitation kinetics of O(1D) state in low-pressure discharge oxygen plasma. The governing equations are the Boltzmann equation to describe the electron energy distribution function and the rate equations of the relevant excited states. We have calculated them back and forth until self-consistent solution is obtained. When the rate coefficient of the electron impact dissociation of O2 to O(3P) and O(1D) atoms is assumed to be functions of electron temperature Te with Maxwellian electron energy distribution, the obtained results are found to be inappropriate. When the rate coefficients are written as functions of electron energy distribution function, satisfactory results are obtained as number density distribution of excited states. We also experimentally examined and confirmed the validity of the model by actinometry measurement for number density of the O(3P) state. It is found that we should consider the electron energy distribution function in describing the excitation kinetics of O(1D) state in low-pressure oxygen plasma.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We develop numerical model to discuss the number density and excitation kinetics of O(1D) state in low-pressure discharge oxygen plasma. The governing equations are the Boltzmann equation to describe the electron energy distribution function and the rate equations of the relevant excited states. We have calculated them back and forth until self-consistent solution is obtained. When the rate coefficient of the electron impact dissociation of O2 to O(3P) and O(1D) atoms is assumed to be functions of electron temperature Te with Maxwellian electron energy distribution, the obtained results are found to be inappropriate. When the rate coefficients are written as functions of electron energy distribution function, satisfactory results are obtained as number density distribution of excited states. We also experimentally examined and confirmed the validity of the model by actinometry measurement for number density of the O(3P) state. It is found that we should consider the electron energy distribution function in describing the excitation kinetics of O(1D) state in low-pressure oxygen plasma.
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs