{"title":"A bacterial foraging strategy-based recurrent neural network for identifying and controlling nonlinear systems","authors":"H. Ge, Liang Sun","doi":"10.1109/ICNC.2012.6234652","DOIUrl":null,"url":null,"abstract":"Identification and control of nonlinear dynamic system plays an important role in many applications. In this paper, a novel bacterial foraging strategy-based Elman neural network is proposed for identifying and controlling nonlinear systems. We first present a learning algorithm for dynamic recurrent networks based on a bacterial foraging strategy oriented by quorum sensing and communication. The proposed algorithm computes concurrently both the weights, initial inputs of the context units and self-feedback coefficient of the Elman network. Thereafter, we introduce and discuss a novel control method based on the proposed algorithm. More specifically, a dynamic identifier is constructed to perform speed identification and a controller is designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the identifier and controller can both achieve higher convergence precision and speed. Besides, a preliminary examination on a random perturbation also shows the robust characteristics of the proposed models.","PeriodicalId":87274,"journal":{"name":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","volume":"19 1","pages":"1127-1131"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computing, Networking, and Communications : [proceedings]. International Conference on Computing, Networking and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Identification and control of nonlinear dynamic system plays an important role in many applications. In this paper, a novel bacterial foraging strategy-based Elman neural network is proposed for identifying and controlling nonlinear systems. We first present a learning algorithm for dynamic recurrent networks based on a bacterial foraging strategy oriented by quorum sensing and communication. The proposed algorithm computes concurrently both the weights, initial inputs of the context units and self-feedback coefficient of the Elman network. Thereafter, we introduce and discuss a novel control method based on the proposed algorithm. More specifically, a dynamic identifier is constructed to perform speed identification and a controller is designed to perform speed control for Ultrasonic Motors (USM). Numerical experiments show that the identifier and controller can both achieve higher convergence precision and speed. Besides, a preliminary examination on a random perturbation also shows the robust characteristics of the proposed models.