A Novel Enhanced Russell Graph Efficiency Measure in Network DEA

R. Eslami, M. Khoveyni
{"title":"A Novel Enhanced Russell Graph Efficiency Measure in Network DEA","authors":"R. Eslami, M. Khoveyni","doi":"10.1142/s0219622022500018","DOIUrl":null,"url":null,"abstract":"Hitherto, the presented models for measuring the efficiency score of multi-stage decision-making units (DMUs) either are nonlinear or require to specify the weights for combining their divisional efficiencies. The nonlinearity leads to high computational complexity for these models, especially when used for problems with enormous dimensions, and also assigning various weights to the divisional efficiencies causes to obtain different efficiency scores for the multi-stage network system. To tackle these problems, this study contributes to network DEA by introducing a novel enhanced Russell graph (ERG) efficiency measure for evaluating the general two-stage series network structures. Then, the proposed model is extended into the general multi-stage series network structures. This study also describes the managerial and economic implications of measuring the efficiency score of the multi-stage DMUs and provides two numerical and empirical examples for illustrating the use of our proposed model.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"185 1","pages":"789-819"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622022500018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hitherto, the presented models for measuring the efficiency score of multi-stage decision-making units (DMUs) either are nonlinear or require to specify the weights for combining their divisional efficiencies. The nonlinearity leads to high computational complexity for these models, especially when used for problems with enormous dimensions, and also assigning various weights to the divisional efficiencies causes to obtain different efficiency scores for the multi-stage network system. To tackle these problems, this study contributes to network DEA by introducing a novel enhanced Russell graph (ERG) efficiency measure for evaluating the general two-stage series network structures. Then, the proposed model is extended into the general multi-stage series network structures. This study also describes the managerial and economic implications of measuring the efficiency score of the multi-stage DMUs and provides two numerical and empirical examples for illustrating the use of our proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络DEA中一种新的改进罗素图效率测度
目前所提出的多阶段决策单元(dmu)效率评分测量模型要么是非线性的,要么需要指定权重来组合它们的划分效率。非线性导致这些模型的计算复杂度很高,特别是当用于巨大维度的问题时,并且对分效率赋予不同的权重会导致多级网络系统获得不同的效率分数。为了解决这些问题,本研究通过引入一种新的增强罗素图(ERG)效率度量来评估一般两阶段串联网络结构,从而为网络DEA做出贡献。然后,将该模型推广到一般的多阶段串联网络结构中。本研究还描述了测量多阶段dmu效率得分的管理和经济含义,并提供了两个数值和实证例子来说明我们提出的模型的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1