The Synthesis of Nanophosphors YPxV1–xO4 by Spray Pyrolysis and Microwave Methods

E. Tomina, Dmitry A. Lastochkin, S. A. Maltsev
{"title":"The Synthesis of Nanophosphors YPxV1–xO4 by Spray Pyrolysis and Microwave Methods","authors":"E. Tomina, Dmitry A. Lastochkin, S. A. Maltsev","doi":"10.17308/kcmf.2020.22/3120","DOIUrl":null,"url":null,"abstract":"Due to rare earth doping, phosphates and vanadates are the leading materials for the synthesis of phosphors due to their thermal stability, low sintering temperature, and chemical stability. Phosphors in the nanoscale state are of particular interest. The simple, fast, and scalable synthesis of nanophosphors with high chemical homogeneity is a priority task. The purpose of this work was to synthesize powders of mixed yttrium vanadate-phosphate crystals of various compositions by coprecipitation under the action of microwave radiation and spray pyrolysis, as well as to compare the characteristics ofthe obtained samples. Samples of YVхP1–хO4 of different compositions were synthesized by coprecipitation under the action of microwave radiation and spray pyrolysis in different modes. In the case of the synthesis of yttrium vanadate-phosphate YVхP1–хO4 by spray pyrolysis followed by annealing, according to the X-ray phase analysis data, single-phase nanopowders were formed. The morphological characteristics of the samples were revealed by the methods of transmission electron microscopy and scanning electron microscopy. Depending on the annealing conditions, the samples were either faceted or spherical particlesless than 100 nm in size. The composition of the YVхP1–хO4 , samples synthesized by the coprecipitation method under the action of microwave radiation strongly depended on the pH of the precursor solution. The minimum content of impurity phases was reached at pH 9.Spray pyrolysis allows the synthesis of yttrium vanadate phosphate YVхP1–хO4 nanopowders of high chemical homogeneity with a particle size of less than 100 nm. The maximum chemical homogeneity of yttrium vanadate-phosphate powders was achieved at pH = 9 during the synthesis of YVхP1–хO4 by coprecipitation under the action of microwave radiation. However, the particle size dispersion was large, within the range of 2–60 μm. \n  \n  \n  \nReferences \n1. Wu C., Wang Y., Jie W. Hydrothermal synthesisand luminescent properties of LnPO4:Tb (Ln = La, Gd)phosphors under VUV excitation. Journal of Alloys andCompounds. 2007;436: 383–386. DOI: https://doi.org/10.1016/j.jallcom.2006.07.0562. Huang J., Tang L., Chen N., Du G. Broadeningthe photoluminescence excitation spectral bandwidthof YVO4:Eu3+ nanoparticles via a novel core-shell andhybridization approach. Materials. 2019;12: 3830. DOI:https://doi.org/10.3390/ma122338303. Wu Y., Zhang Z., Suo H., Zhao X., Guo C. 808 nmlight triggered up-conversion optical nano-thermometerYPO4:Nd3+/Yb3+/Er3+ based on FIR technology.Journal of Luminescence. 2019;214: 116478. DOI:https://doi.org/10.1016/j.jlumin.2019.1165784. Xiu Z., Wu Y., Hao X., Li X., Zhang L. Uniformand well-dispersed Y2O3:Eu/YVO4:Eu composite microsphereswith high photoluminescence prepared bychemical corrosion approach. Colloids Surf. A.2012;401(5): 68–73. DOI: https://doi.org/10.1016/j.colsurfa.2012.03.0215. Vats B. G., Gupta S. K., Keskar M., Phatak R.,Mukherjee S., Kannan S. The effect of vanadium substitutionon photoluminescent properties of KSrLa(-PO4)x(VO4)2x:Eu3+ phosphors, a new variant of phosphovanadates.New Journal of Chemistry. 2016;40(2):1799–1806. DOI: https://doi.org/10.1039/c5nj02951a6. Riwotzki K., Haase M. Colloidal YVO4:Eu andYP0.95V0.05O4:Eu nanoparticles: luminescence and energytransfer processes. The Journal of Physical ChemistryB. 2001;105(51): 12709–12713. DOI: https://doi.org/10.1021/jp01137357. Wu C.-C., Chen K.-B., Lee C.-S., Chen T.-M.,Cheng B.-M. Synthesis and VUV photoluminescencecharacterization of (Y,Gd)(V,P)O4:Eu3+ as a potentialred-emitting PDP phosphor. Chem. Mater. 2007;19(13):3278–3285. DOI: https://doi.org/10.1021/cm061042a8. Shimomura Y., Kurushima T., Olivia R., Kijima N.Synthesis of Y(P,V)O4:Eu3+ red phosphor by spray pyrolysiswithout postheating. The Japan Society of Applied.2005;44(3): 1356–1360. DOI: https://doi.org/10.1143/JJAP.44.13569. Lai H, Chen B., Xu W., Xie Y., Wang X., Di W. Fineparticles (Y,Gd)PxV1−xO4:Eu3+ phosphor for PDP preparedby coprecipitation reaction. Materials Letters.2006; 60 (11): 1341-1343. DOI: https://doi.org/10.1016/j.matlet.2005.11.05110. Singh V., Takami S., Aoki N., Hojo D., Arita T.,Adschiri T. Hydrothermal synthesis of luminescentGdVO4:Eu nanoparticles with dispersibility in organicsolvents. Journal of Nanoparticle Research. 2014;16(5):2378. DOI: https://doi.org/10.1007/s11051-014-2378-211. Song W.-S., Kim Y.-S., Yang H. Hydrothermalsynthesis of self-emitting Y(V,P)O4 nanophosphors forfabrication of transparent blue-emitting display device.Journal of Luminescence. 2012;132(5): 1278–1284.DOI: https://doi.org/10.1016/j.jlumin.2012.01.01512. Yu M., Lin J., Fu J., Han Y. Sol–gel fabrication,patterning and photoluminescent properties ofLaPO4:Ce3+, Tb3+ nanocrystalline thin films. ChemicalPhysics Letters. 2003;5(1-2): 178–183. DOI: https://doi.org/10.1016/S0009-2614(03)00239-213. Raoufi D., Raoufi T. The effect of heat treatmenton the physical properties of sol–gel derived ZnO thinfilms. Applied Surface Science. 2009;255(11): 5812–5817. DOI: https://doi.org/10.1016/j.ap-susc.2009.01.01014. Shao J., Yan J., Li X., Li S., Hu T. Novel fluorescentlabel based on YVO4:Bi3+, Eu3+ for latent fingerprintdetection. Dyes and Pigments. 2019;160: 555–562.DOI: https://doi.org/10.1016/j.dyepig.2018.08.03315. Dolinskaya Yu. A., Kolesnikov I. E., KurochkinA. V., Man’shina A. A., Mikhailov M. D., SemenchaA. V. Sol-Gel synthesis and luminescent propertiesof YVO4: Eu nanoparticles. Glass Physics and Chemistry.2013;39(3): 308–310. DOI: https://doi.org/10.1134/s108765961303006116. Tomina E. V., Sladkopevtsev B. V., Knurova M. V.,Latyshev A.N., Mittova I. Y., Mittova V. O. Microwavesynthesis and luminescence properties of YVO4:Eu3+.Inorganic Materials. 2016;52(5): 495–498. DOI: https://doi.org/10.7868/S0002337X1605017117. Tomina E. V., Mittova I. J., Burtseva N. A.,Sladkopevtsev B. V. Method for synthesis of yttrium orthovanadate-based phosphor: patent for invention No2548089. The patent holder FGBOU VPO “Voronezhstate University” No 2013133382/05; declared12.11.2013; published. 20.05.2015.18. Tomina E. V., Kurkin N. A., & Mal’tsev S. A.Microwave synthesis of yttrium orthoferrite dopedwith nickel. Kondensirovannye sredy i mezhfaznyegranitsy = Condensed Matter and Interphases.2019;21(2): 306–312. DOI:https://doi.org/10.17308/kcmf.2019.21/768 (In Russ., abstract in Eng.)19. Huang J., Gao R., Lu Z., Qian D., Li W., Huang B.,He X. Sol–gel preparation and photoluminescenceenhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors.Optical Materials. 2010;32(9): 857–861.DOI: https://doi.org/10.1016/j.optmat.2009.12.01120. Brandon D., Kaplan W. D. MicrostructuralCharacterization of Materials. John Wiley & Sons Ltd;1999. 409 p. DOI: https://doi.org/10.1002/9780470727133","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2020.22/3120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to rare earth doping, phosphates and vanadates are the leading materials for the synthesis of phosphors due to their thermal stability, low sintering temperature, and chemical stability. Phosphors in the nanoscale state are of particular interest. The simple, fast, and scalable synthesis of nanophosphors with high chemical homogeneity is a priority task. The purpose of this work was to synthesize powders of mixed yttrium vanadate-phosphate crystals of various compositions by coprecipitation under the action of microwave radiation and spray pyrolysis, as well as to compare the characteristics ofthe obtained samples. Samples of YVхP1–хO4 of different compositions were synthesized by coprecipitation under the action of microwave radiation and spray pyrolysis in different modes. In the case of the synthesis of yttrium vanadate-phosphate YVхP1–хO4 by spray pyrolysis followed by annealing, according to the X-ray phase analysis data, single-phase nanopowders were formed. The morphological characteristics of the samples were revealed by the methods of transmission electron microscopy and scanning electron microscopy. Depending on the annealing conditions, the samples were either faceted or spherical particlesless than 100 nm in size. The composition of the YVхP1–хO4 , samples synthesized by the coprecipitation method under the action of microwave radiation strongly depended on the pH of the precursor solution. The minimum content of impurity phases was reached at pH 9.Spray pyrolysis allows the synthesis of yttrium vanadate phosphate YVхP1–хO4 nanopowders of high chemical homogeneity with a particle size of less than 100 nm. The maximum chemical homogeneity of yttrium vanadate-phosphate powders was achieved at pH = 9 during the synthesis of YVхP1–хO4 by coprecipitation under the action of microwave radiation. However, the particle size dispersion was large, within the range of 2–60 μm.       References 1. Wu C., Wang Y., Jie W. Hydrothermal synthesisand luminescent properties of LnPO4:Tb (Ln = La, Gd)phosphors under VUV excitation. Journal of Alloys andCompounds. 2007;436: 383–386. DOI: https://doi.org/10.1016/j.jallcom.2006.07.0562. Huang J., Tang L., Chen N., Du G. Broadeningthe photoluminescence excitation spectral bandwidthof YVO4:Eu3+ nanoparticles via a novel core-shell andhybridization approach. Materials. 2019;12: 3830. DOI:https://doi.org/10.3390/ma122338303. Wu Y., Zhang Z., Suo H., Zhao X., Guo C. 808 nmlight triggered up-conversion optical nano-thermometerYPO4:Nd3+/Yb3+/Er3+ based on FIR technology.Journal of Luminescence. 2019;214: 116478. DOI:https://doi.org/10.1016/j.jlumin.2019.1165784. Xiu Z., Wu Y., Hao X., Li X., Zhang L. Uniformand well-dispersed Y2O3:Eu/YVO4:Eu composite microsphereswith high photoluminescence prepared bychemical corrosion approach. Colloids Surf. A.2012;401(5): 68–73. DOI: https://doi.org/10.1016/j.colsurfa.2012.03.0215. Vats B. G., Gupta S. K., Keskar M., Phatak R.,Mukherjee S., Kannan S. The effect of vanadium substitutionon photoluminescent properties of KSrLa(-PO4)x(VO4)2x:Eu3+ phosphors, a new variant of phosphovanadates.New Journal of Chemistry. 2016;40(2):1799–1806. DOI: https://doi.org/10.1039/c5nj02951a6. Riwotzki K., Haase M. Colloidal YVO4:Eu andYP0.95V0.05O4:Eu nanoparticles: luminescence and energytransfer processes. The Journal of Physical ChemistryB. 2001;105(51): 12709–12713. DOI: https://doi.org/10.1021/jp01137357. Wu C.-C., Chen K.-B., Lee C.-S., Chen T.-M.,Cheng B.-M. Synthesis and VUV photoluminescencecharacterization of (Y,Gd)(V,P)O4:Eu3+ as a potentialred-emitting PDP phosphor. Chem. Mater. 2007;19(13):3278–3285. DOI: https://doi.org/10.1021/cm061042a8. Shimomura Y., Kurushima T., Olivia R., Kijima N.Synthesis of Y(P,V)O4:Eu3+ red phosphor by spray pyrolysiswithout postheating. The Japan Society of Applied.2005;44(3): 1356–1360. DOI: https://doi.org/10.1143/JJAP.44.13569. Lai H, Chen B., Xu W., Xie Y., Wang X., Di W. Fineparticles (Y,Gd)PxV1−xO4:Eu3+ phosphor for PDP preparedby coprecipitation reaction. Materials Letters.2006; 60 (11): 1341-1343. DOI: https://doi.org/10.1016/j.matlet.2005.11.05110. Singh V., Takami S., Aoki N., Hojo D., Arita T.,Adschiri T. Hydrothermal synthesis of luminescentGdVO4:Eu nanoparticles with dispersibility in organicsolvents. Journal of Nanoparticle Research. 2014;16(5):2378. DOI: https://doi.org/10.1007/s11051-014-2378-211. Song W.-S., Kim Y.-S., Yang H. Hydrothermalsynthesis of self-emitting Y(V,P)O4 nanophosphors forfabrication of transparent blue-emitting display device.Journal of Luminescence. 2012;132(5): 1278–1284.DOI: https://doi.org/10.1016/j.jlumin.2012.01.01512. Yu M., Lin J., Fu J., Han Y. Sol–gel fabrication,patterning and photoluminescent properties ofLaPO4:Ce3+, Tb3+ nanocrystalline thin films. ChemicalPhysics Letters. 2003;5(1-2): 178–183. DOI: https://doi.org/10.1016/S0009-2614(03)00239-213. Raoufi D., Raoufi T. The effect of heat treatmenton the physical properties of sol–gel derived ZnO thinfilms. Applied Surface Science. 2009;255(11): 5812–5817. DOI: https://doi.org/10.1016/j.ap-susc.2009.01.01014. Shao J., Yan J., Li X., Li S., Hu T. Novel fluorescentlabel based on YVO4:Bi3+, Eu3+ for latent fingerprintdetection. Dyes and Pigments. 2019;160: 555–562.DOI: https://doi.org/10.1016/j.dyepig.2018.08.03315. Dolinskaya Yu. A., Kolesnikov I. E., KurochkinA. V., Man’shina A. A., Mikhailov M. D., SemenchaA. V. Sol-Gel synthesis and luminescent propertiesof YVO4: Eu nanoparticles. Glass Physics and Chemistry.2013;39(3): 308–310. DOI: https://doi.org/10.1134/s108765961303006116. Tomina E. V., Sladkopevtsev B. V., Knurova M. V.,Latyshev A.N., Mittova I. Y., Mittova V. O. Microwavesynthesis and luminescence properties of YVO4:Eu3+.Inorganic Materials. 2016;52(5): 495–498. DOI: https://doi.org/10.7868/S0002337X1605017117. Tomina E. V., Mittova I. J., Burtseva N. A.,Sladkopevtsev B. V. Method for synthesis of yttrium orthovanadate-based phosphor: patent for invention No2548089. The patent holder FGBOU VPO “Voronezhstate University” No 2013133382/05; declared12.11.2013; published. 20.05.2015.18. Tomina E. V., Kurkin N. A., & Mal’tsev S. A.Microwave synthesis of yttrium orthoferrite dopedwith nickel. Kondensirovannye sredy i mezhfaznyegranitsy = Condensed Matter and Interphases.2019;21(2): 306–312. DOI:https://doi.org/10.17308/kcmf.2019.21/768 (In Russ., abstract in Eng.)19. Huang J., Gao R., Lu Z., Qian D., Li W., Huang B.,He X. Sol–gel preparation and photoluminescenceenhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors.Optical Materials. 2010;32(9): 857–861.DOI: https://doi.org/10.1016/j.optmat.2009.12.01120. Brandon D., Kaplan W. D. MicrostructuralCharacterization of Materials. John Wiley & Sons Ltd;1999. 409 p. DOI: https://doi.org/10.1002/9780470727133
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷雾热解-微波法制备纳米磷光体ypx_1 - xo4
由于稀土掺杂,磷酸盐和钒酸盐具有热稳定性、低烧结温度和化学稳定性,是合成荧光粉的主要材料。纳米级状态的荧光粉是特别有趣的。具有高化学均匀性的纳米荧光粉的简单、快速和可扩展的合成是一个优先任务。在微波辐射和喷雾热解的作用下,采用共沉淀法合成了不同组成的钒酸钇-磷酸混合晶体粉末,并对所得样品的特性进行了比较。在微波辐射和不同模式的喷雾热解作用下,通过共沉淀法合成了不同成分的YVхP1 -хO4样品。在喷雾热解后退火合成钒酸磷酸钇YVхP1 -хO4的情况下,根据x射线物相分析数据,形成了单相纳米粉体。通过透射电镜和扫描电镜对样品的形态特征进行了分析。根据退火条件的不同,样品是尺寸小于100纳米的面状或球形颗粒。在微波辐射作用下,用共沉淀法合成的YVхP1 -хO4样品的组成与前驱体溶液的pH值密切相关。pH值为9时杂质相含量最低。喷雾热解可以合成钒酸钇磷酸盐YVхP1 -хO4纳米粉末,具有高化学均匀性,粒径小于100 nm。在微波辐射作用下共沉淀法合成YVхP1 -хO4时,pH = 9时,钒酸钇-磷酸钇粉体的化学均匀性达到最大。粒径分散较大,分布在2 ~ 60 μm范围内。引用1。吴春春,王玉文,杰文。紫外激发下LnPO4:Tb (Ln = La, Gd)荧光粉的水热合成及发光性能。合金与化合物杂志。2007; 436: 383 - 386。DOI: https://doi.org/10.1016/j.jallcom.2006.07.0562。黄军,唐丽,陈宁,杜刚。利用核壳杂交技术拓宽YVO4:Eu3+纳米粒子的光致发光激发光谱带宽。材料学报,2019;12:3830。DOI: https://doi.org/10.3390/ma122338303。吴艳,张志,索红,赵鑫,郭晨。808纳米光触发上转换光学纳米温度计ypo4:Nd3+/Yb3+/Er3+。光子学报。2019;26(2):563 - 567。DOI: https://doi.org/10.1016/j.jlumin.2019.1165784。修忠,吴勇,郝翔,李翔,张磊。化学腐蚀法制备均匀分散的高光致发光Y2O3:Eu/YVO4:Eu复合微球。胶体冲浪。A.2012; 401(5): 68 - 73。DOI: https://doi.org/10.1016/j.colsurfa.2012.03.0215。Vats B. G., Gupta S. K., Keskar M., Phatak R. Mukherjee S., KSrLa(-PO4)x(VO4)2x:Eu3+磷光体的光致发光性能。化学学报,2016;40(2):1799-1806。DOI: https://doi.org/10.1039/c5nj02951a6。李建军,李建军,李建军,等。YVO4:Eu和YVO4:Eu纳米粒子的发光和能量转移过程。物理化学杂志b。2001; 105(51): 12709 - 12713。DOI: https://doi.org/10.1021/jp01137357。吴。陈克斌;李正生。,陈廷铭。,程恩华b m。(Y,Gd)(V,P)O4:Eu3+电位发光PDP荧光粉的合成及VUV光致发光表征化学。板牙。2007;19(13):3278 - 3285。DOI: https://doi.org/10.1021/cm061042a8。李建军,李建军,李建军,等。喷雾热解法制备Y(P,V)O4:Eu3+红色荧光粉。中国机械工程学报,2005;44(3):1356-1360。DOI: https://doi.org/10.1143/JJAP.44.13569。赖华,陈斌,徐伟,谢勇,王晓霞,狄伟。PDP共沉淀制备PxV1 - xO4:Eu3+细颗粒。材料Letters.2006;60(11): 1341-1343。DOI: https://doi.org/10.1016/j.matlet.2005.11.05110。李建军,李建军,李建军,等。水热合成纳米gdvo4:Eu的研究进展。纳米粒子学报,2014;16(5):2378。DOI: https://doi.org/10.1007/s11051 - 014 - 2378 - 211。首歌W.-S。, Kim y - s。杨辉。水热合成自发光Y(V,P)O4纳米荧光粉制备透明蓝光显示器件。发光学报,2012,32(5):1278-1284。DOI: https://doi.org/10.1016/j.jlumin.2012.01.01512。于敏,林军,傅军,韩勇。flapo4:Ce3+, Tb3+纳米晶薄膜的溶胶-凝胶制备、图图化及光致发光性能。化学物理学报。2003;5(1-2):178-183。DOI: https://doi.org/10.1016/s0009 - 2614(03) 00239 - 213。李建军,李建军。热处理对ZnO薄膜物理性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1