Characteristics of Clay Soils Utilizing Okra Tips

Khalid W. Abd Al-Kaream, Mohammed D. Noori, Mudhafar K. Hameedi, Zainab H. Shaker
{"title":"Characteristics of Clay Soils Utilizing Okra Tips","authors":"Khalid W. Abd Al-Kaream, Mohammed D. Noori, Mudhafar K. Hameedi, Zainab H. Shaker","doi":"10.4028/p-gOor20","DOIUrl":null,"url":null,"abstract":"Soft clay soil is well known to deform and fail beneath a light surcharge load and being described via high compressibility, low shear strength, and high content of water. The objective of the present study is to determine the optimum okra tips that can be added to stabilize soft clayey soil. Several tests were conducted to determine how varying percentages of okra two ends plants (3, 6 and 9%) for all additives to the dry weight of soil affect the results. The experimental work is used to get the percent of consistency limits, compaction, consolidation, and unconfined compressive strength of the two okra ends increased significantly over time until the improvise continuously decayed. As per the research results, adding, 9%, okra tips stabilizer increased the shear strength and efficiently bonded soil particles together, of resulting in the best engineering qualities. Raising the end content of okra leads to a 57 percent increase in the unconfined compressive strength in content 9 % okra tips.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":"44 1","pages":"3 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-gOor20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soft clay soil is well known to deform and fail beneath a light surcharge load and being described via high compressibility, low shear strength, and high content of water. The objective of the present study is to determine the optimum okra tips that can be added to stabilize soft clayey soil. Several tests were conducted to determine how varying percentages of okra two ends plants (3, 6 and 9%) for all additives to the dry weight of soil affect the results. The experimental work is used to get the percent of consistency limits, compaction, consolidation, and unconfined compressive strength of the two okra ends increased significantly over time until the improvise continuously decayed. As per the research results, adding, 9%, okra tips stabilizer increased the shear strength and efficiently bonded soil particles together, of resulting in the best engineering qualities. Raising the end content of okra leads to a 57 percent increase in the unconfined compressive strength in content 9 % okra tips.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用秋葵尖的粘土特性研究
众所周知,软粘土在较轻的附加荷载下会变形和破坏,并通过高压缩性、低抗剪强度和高含水量来描述。本研究的目的是确定可用于稳定软粘土的最佳秋葵尖端。进行了几项试验,以确定秋葵两端植物(3、6和9%)对所有添加剂干重的不同百分比对结果的影响。实验结果表明,随着时间的推移,秋葵两端的一致性极限百分比、压实率、固结率和无侧限抗压强度均显著增加,直至即兴持续衰减。研究结果表明,添加9%的秋葵尖端稳定剂提高了抗剪强度,有效地将土粒结合在一起,获得了最佳的工程质量。提高秋葵末含量可使秋葵尖含量9%的无侧限抗压强度提高57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lantana Camara Plant-Biochar Added Cementitious Mortar for Carbon Sequestration: Effect on Early-Age Properties An Experimental Study on the Mechanical Properties of Concrete by Using Human Hair Fiber as Reinforcement Designing a Material Database for the Flood-Resistant Housing An Experimental Study on Mechanical Properties of Concrete by Using Various Types of Coarse Aggregates of Different Quarries Progressive Pushover Analysis of a Reinforced Concrete Bridge of Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1