Parallel sections: scaling system-level data-structures

Qi Wang, Tim Stamler, Gabriel Parmer
{"title":"Parallel sections: scaling system-level data-structures","authors":"Qi Wang, Tim Stamler, Gabriel Parmer","doi":"10.1145/2901318.2901356","DOIUrl":null,"url":null,"abstract":"As systems continue to increase the number of cores within cache coherency domains, traditional techniques for enabling parallel computation on data-structures are increasingly strained. A single contended cache-line bouncing between different caches can prohibit continued performance gains with additional cores. New abstractions and mechanisms are required to reassess how data-structure consistency can be provided, while maintaining stable per-core access latencies. This paper presents the Parallel Sections (ParSec) abstraction for mediating access to shared data-structures. Fundamental to the approach is a new form of scalable memory reclamation that leverages fast local access to real-time to globally order system events. This approach attempts to minimize coherency-traffic, while harnessing the benefit of shared read-mostly cache-lines. We show that the co-management of scalable memory reclamation, memory allocation, locking, and namespace management enables scalable system service implementation. We apply ParSec to both memcached, and virtual memory management in a microkernel, and find order-of magnitude performance increases on a four socket, 40 core machine, and 30x lower 99th percentile latencies for virtual memory management.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901318.2901356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

As systems continue to increase the number of cores within cache coherency domains, traditional techniques for enabling parallel computation on data-structures are increasingly strained. A single contended cache-line bouncing between different caches can prohibit continued performance gains with additional cores. New abstractions and mechanisms are required to reassess how data-structure consistency can be provided, while maintaining stable per-core access latencies. This paper presents the Parallel Sections (ParSec) abstraction for mediating access to shared data-structures. Fundamental to the approach is a new form of scalable memory reclamation that leverages fast local access to real-time to globally order system events. This approach attempts to minimize coherency-traffic, while harnessing the benefit of shared read-mostly cache-lines. We show that the co-management of scalable memory reclamation, memory allocation, locking, and namespace management enables scalable system service implementation. We apply ParSec to both memcached, and virtual memory management in a microkernel, and find order-of magnitude performance increases on a four socket, 40 core machine, and 30x lower 99th percentile latencies for virtual memory management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行分段:扩展系统级数据结构
随着系统不断增加缓存一致性域中的核心数量,在数据结构上实现并行计算的传统技术越来越紧张。单个争用缓存线在不同缓存之间的弹跳可能会阻止额外核心的持续性能提升。需要新的抽象和机制来重新评估如何提供数据结构一致性,同时保持稳定的每核访问延迟。本文提出了并行段(ParSec)抽象,用于中介对共享数据结构的访问。该方法的基础是一种新的可扩展内存回收形式,它利用快速本地访问实时到全局顺序系统事件。这种方法尝试最小化一致性流量,同时利用共享读取(主要是缓存)行的优势。我们展示了可伸缩内存回收、内存分配、锁定和名称空间管理的共同管理支持可伸缩的系统服务实现。我们将ParSec应用于微内核中的memcached和虚拟内存管理,发现在4个套接字、40个核心的机器上,性能有了数量级的提高,虚拟内存管理的第99百分位延迟降低了30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1