PCIer: Pavement Condition Evaluation Using Aerial Imagery and Deep Learning

Q3 Social Sciences Human Geographies Pub Date : 2023-02-01 DOI:10.3390/geographies3010008
Sisi Han, In-Hun Chung, Yuhan Jiang, Benjamin Uwakweh
{"title":"PCIer: Pavement Condition Evaluation Using Aerial Imagery and Deep Learning","authors":"Sisi Han, In-Hun Chung, Yuhan Jiang, Benjamin Uwakweh","doi":"10.3390/geographies3010008","DOIUrl":null,"url":null,"abstract":"This paper aims to explore and evaluate aerial imagery and deep learning technology in pavement condition evaluation. A convolutional neural network (CNN) model, named PCIer, was designed to process aerial images and produce pavement condition index (PCI) estimations, which are classified into four scales of Good (PCI ≥ 70), Fair (50 ≤ PCI < 70), Poor (25 ≤ PCI < 50), and Very Poor (PCI < 25). In the experiment, the PCI datasets were retrieved from the published pavement condition report by the City of Sacramento, CA. Following the retrieved datasets, the authors also collected the corresponding aerial image datasets containing 100 images for each PCI grade from Google Earth. An 80% proportion of datasets were used for PCIer model training, and the remaining were used for testing. Comparisons showed using a 128-channel heatmap layer in the proposed PCIer model and saving the PCIer model with the best validation accuracy would yield the best performance, with a testing accuracy of 0.97, and a weighted average precision, recall, and F1-score of 0.98, 0.97, and 0.97, respectively. Moreover, future research recommendations are provided in the discussion for improving the effectiveness of pavement evaluation via aerial imagery and deep learning.","PeriodicalId":38507,"journal":{"name":"Human Geographies","volume":"560 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Geographies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geographies3010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims to explore and evaluate aerial imagery and deep learning technology in pavement condition evaluation. A convolutional neural network (CNN) model, named PCIer, was designed to process aerial images and produce pavement condition index (PCI) estimations, which are classified into four scales of Good (PCI ≥ 70), Fair (50 ≤ PCI < 70), Poor (25 ≤ PCI < 50), and Very Poor (PCI < 25). In the experiment, the PCI datasets were retrieved from the published pavement condition report by the City of Sacramento, CA. Following the retrieved datasets, the authors also collected the corresponding aerial image datasets containing 100 images for each PCI grade from Google Earth. An 80% proportion of datasets were used for PCIer model training, and the remaining were used for testing. Comparisons showed using a 128-channel heatmap layer in the proposed PCIer model and saving the PCIer model with the best validation accuracy would yield the best performance, with a testing accuracy of 0.97, and a weighted average precision, recall, and F1-score of 0.98, 0.97, and 0.97, respectively. Moreover, future research recommendations are provided in the discussion for improving the effectiveness of pavement evaluation via aerial imagery and deep learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCIer:使用航空图像和深度学习的路面状况评估
本文旨在探索和评估航空图像和深度学习技术在路面状况评估中的应用。设计卷积神经网络(CNN)模型PCIer,对航拍图像进行处理,生成路面状况指数(PCI)估计,将路面状况指数分为良好(PCI≥70)、一般(50≤PCI < 70)、差(25≤PCI < 50)和极差(PCI < 25)四个等级。在实验中,PCI数据集是从加利福尼亚州萨克拉门托市公布的路面状况报告中检索到的。在检索到数据集之后,作者还收集了相应的航空图像数据集,其中包含来自Google Earth的每个PCI等级的100张图像。80%的数据集用于PCIer模型训练,其余用于测试。比较表明,采用128通道热图层的PCIer模型与保存验证精度最高的PCIer模型的性能最好,测试精度为0.97,加权平均精度、召回率和f1分数分别为0.98、0.97和0.97。此外,本文还提出了未来的研究建议,以提高利用航空图像和深度学习进行路面评价的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Geographies
Human Geographies Social Sciences-Geography, Planning and Development
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
8 weeks
期刊最新文献
Residents and Stakeholder Opinions on Township Tourism in Langa, Cape Town, South Africa Spatio-Temporal Dynamics and Physico-Hydrological Trends in Rainfall, Runoff and Land Use in Paraíba Watershed Perspectives on Advanced Technologies in Spatial Data Collection and Analysis Contemporary Challenges in Destination Planning: A Geographical Typology Approach Spatiotemporal Dengue Fever Incidence Associated with Climate in a Brazilian Tropical Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1