{"title":"Enhancing Electrocatalytic Production of\n \n H\n 2\n O\n 2\n \n by Modulating Coordination Environment of Cobalt Center","authors":"Guoling Wu, Zhongjie Yang, Tianlin Zhang, Yali Sun, Chang Long, Song Yaru, Shengbin Lei, Zhiyong Tang","doi":"10.1002/bkcs.12348","DOIUrl":null,"url":null,"abstract":"As an environmentally friendly oxidant, H2O2 is widely utilized in various fields; however, its production methods remain limited to the chemical anthraquinone process. Alternatively, electrocatalytic oxygen reduction possesses numerous notable advantages (e.g., cost-effectiveness, small-scale, and distributed nature). As electrocatalytic oxygen reduction has been widely investigated in the fields of fuel cells and metal-air batteries, the mechanism of the 2e−-ORR pathway for producing H2O2 is not sufficiently clear. Herein, we explore the effect of the cobalt (Co) coordination environment on the electrochemical production of H2O2. The detailed investigation on N-, P-, and S-coordinated Co catalysts (Co1N1N3, Co1P1N3, and Co1S1N3) demonstrates that changing the coordination environment evidently affects the H2O2 selectivity, and the S-coordinated Co exhibits the best catalytic performance. This finding would lead to the design and selection of catalysts at atomic level for producing H2O2 via electrocatalytic oxygen reduction.","PeriodicalId":9457,"journal":{"name":"Bulletin of The Korean Chemical Society","volume":"66 4 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/bkcs.12348","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
As an environmentally friendly oxidant, H2O2 is widely utilized in various fields; however, its production methods remain limited to the chemical anthraquinone process. Alternatively, electrocatalytic oxygen reduction possesses numerous notable advantages (e.g., cost-effectiveness, small-scale, and distributed nature). As electrocatalytic oxygen reduction has been widely investigated in the fields of fuel cells and metal-air batteries, the mechanism of the 2e−-ORR pathway for producing H2O2 is not sufficiently clear. Herein, we explore the effect of the cobalt (Co) coordination environment on the electrochemical production of H2O2. The detailed investigation on N-, P-, and S-coordinated Co catalysts (Co1N1N3, Co1P1N3, and Co1S1N3) demonstrates that changing the coordination environment evidently affects the H2O2 selectivity, and the S-coordinated Co exhibits the best catalytic performance. This finding would lead to the design and selection of catalysts at atomic level for producing H2O2 via electrocatalytic oxygen reduction.
期刊介绍:
The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.