A Combined Model for Short-term Load Forecasting Based on Bird Swarm Algorithm

Zhengcai Cao, Lu Liu, Meng Zhou
{"title":"A Combined Model for Short-term Load Forecasting Based on Bird Swarm Algorithm","authors":"Zhengcai Cao, Lu Liu, Meng Zhou","doi":"10.1109/COASE.2018.8560515","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting (STLF) plays a very important role in the power system scheduling of smart grid. In this paper, a variable weight combined load forecasting model is proposed, effectively improves the accuracy of short-term load forecasting. A prediction model is presented by combining there single prediction models, i.e. random forest, extreme learning machine and Elman neural network. Then a bird swarm-based intelligent algorithm is utilized to solve the weighting problem among them. Experimental results demonstrate that the new constructed prediction model has higher prediction accuracy than any single load forecasting model.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"1 1","pages":"791-796"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Short-term load forecasting (STLF) plays a very important role in the power system scheduling of smart grid. In this paper, a variable weight combined load forecasting model is proposed, effectively improves the accuracy of short-term load forecasting. A prediction model is presented by combining there single prediction models, i.e. random forest, extreme learning machine and Elman neural network. Then a bird swarm-based intelligent algorithm is utilized to solve the weighting problem among them. Experimental results demonstrate that the new constructed prediction model has higher prediction accuracy than any single load forecasting model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于群算法的短期负荷预测组合模型
短期负荷预测在智能电网的电力系统调度中起着非常重要的作用。本文提出了一种变权组合负荷预测模型,有效提高了短期负荷预测的准确性。将随机森林、极限学习机和Elman神经网络这三种单一的预测模型相结合,提出了一种预测模型。然后利用基于鸟群的智能算法求解它们之间的权重问题。实验结果表明,该预测模型比单一负荷预测模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1