{"title":"Quantum approximate counting for Markov chains and collision counting","authors":"F. Gall, Iu-Iong Ng","doi":"10.26421/qic22.15-16-1","DOIUrl":null,"url":null,"abstract":"In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\\epsilon$ by making $\\tilde{O}\\left(\\frac{1}{\\epsilon^{25/24}}\\big(\\frac{N}{\\sqrt{m}}\\big)^{2/3}\\right)$ queries, which gives an improvement over the $\\Theta\\big(\\frac{1}{\\epsilon}\\frac{N}{\\sqrt{m}}\\big)$-query classical algorithm based on random sampling when $m\\ll N$.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"99 1","pages":"1261-1279"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.15-16-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we show how to generalize the quantum approximate counting technique developed by Brassard, H{\o}yer and Tapp [ICALP 1998] to a more general setting: estimating the number of marked states of a Markov chain (a Markov chain can be seen as a random walk over a graph with weighted edges). This makes it possible to construct quantum approximate counting algorithms from quantum search algorithms based on the powerful ``quantum walk based search'' framework established by Magniez, Nayak, Roland and Santha [SIAM Journal on Computing 2011]. As an application, we apply this approach to the quantum element distinctness algorithm by Ambainis [SIAM Journal on Computing 2007]: for two injective functions over a set of $N$ elements, we obtain a quantum algorithm that estimates the number $m$ of collisions of the two functions within relative error $\epsilon$ by making $\tilde{O}\left(\frac{1}{\epsilon^{25/24}}\big(\frac{N}{\sqrt{m}}\big)^{2/3}\right)$ queries, which gives an improvement over the $\Theta\big(\frac{1}{\epsilon}\frac{N}{\sqrt{m}}\big)$-query classical algorithm based on random sampling when $m\ll N$.