Succinct Range Filters

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, K. Keeton, Andrew Pavlo
{"title":"Succinct Range Filters","authors":"Huanchen Zhang, Hyeontaek Lim, Viktor Leis, D. Andersen, M. Kaminsky, K. Keeton, Andrew Pavlo","doi":"10.1145/3375660","DOIUrl":null,"url":null,"abstract":"We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false-positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100-GB dataset show that replacing RocksDB’s Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false-positive rate.","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"5 1","pages":"1 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false-positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100-GB dataset show that replacing RocksDB’s Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false-positive rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简洁范围过滤器
摘要提出了一种快速、紧凑的近似隶属度检验数据结构——简洁范围滤波器(SuRF)。与传统的Bloom过滤器不同,SuRF支持单键查找和常见的范围查询:开放范围查询,封闭范围查询和范围计数。SuRF基于一种新的数据结构,称为快速简洁Trie (FST),它匹配最先进的顺序保持索引的点和范围查询性能,同时每个Trie节点仅消耗10比特。SuRF中点查询和范围查询的误报率是可调的,以满足不同的应用程序需求。我们评估了RocksDB中的SuRF作为Bloom过滤器的替代品,通过在请求访问磁盘数据结构之前过滤请求来减少I/O。我们在100 gb数据集上的实验表明,用surf替换RocksDB的Bloom过滤器可以使开放寻道(没有上界)和封闭寻道(有上界)查询的速度提高1.5倍和5倍,并且由于误报率略高,在最坏情况(全部缺失)点查询吞吐量上的代价不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Finding Rank Regret Representatives Answering (Unions of) Conjunctive Queries using Random Access and Random-Order Enumeration Persistent Summaries Influence Maximization Revisited: Efficient Sampling with Bound Tightened The Space-Efficient Core of Vadalog
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1