{"title":"Design and Evaluation of a Network-Based Asynchronous Architecture for Cryptographic Devices","authors":"Ljiljana Dilparic, D. Arvind","doi":"10.1109/ASAP.2004.10017","DOIUrl":null,"url":null,"abstract":"This paper presents a network-based asynchronous architecture that improves the physical-level security of cryptographic devices to known side-channel attacks. This is achieved by decorrelating power consumption measurements by exploiting parallel execution and randomised data-forwarding over a network of functional units. Instructions execute in parallel and forward register values between them, thereby avoiding the register bank. A secret-sharing scheme is used in data-forwarding to remove the effect of sending critical register values through the network, which does not significantly degrade performance and has a positive effect of increasing the noise due to network activity. The simulation results show that both the security threshold and the performance are improved, and the network-based architecture is more robust to differential power analysis when compared to the asynchronous pipelined architecture.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"27 1","pages":"191-201"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2004.10017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a network-based asynchronous architecture that improves the physical-level security of cryptographic devices to known side-channel attacks. This is achieved by decorrelating power consumption measurements by exploiting parallel execution and randomised data-forwarding over a network of functional units. Instructions execute in parallel and forward register values between them, thereby avoiding the register bank. A secret-sharing scheme is used in data-forwarding to remove the effect of sending critical register values through the network, which does not significantly degrade performance and has a positive effect of increasing the noise due to network activity. The simulation results show that both the security threshold and the performance are improved, and the network-based architecture is more robust to differential power analysis when compared to the asynchronous pipelined architecture.